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Graphical Processing Units (GPUs) are a powerful alternative to CPUs, especially for

data-parallel, video-rate processing of large data volumes. In the complex scenario of

high-performance multichannel Time Correlated Single Photon Counting (TCSPC),

a huge amount of data is potentially generated by the acquisition system. Exploit-

ing a dedicated external, programmable elaboration unit enables a high degree of

flexibility to perform different types of analysis. In this paper, we present a GPU-

based application that leverages the CUDA API for video-rate and accurate lifetime

extraction from TCSPC data acquired at a rate of up to 10 Gbit/s.
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I. INTRODUCTION

Time Correlated Single Photon Counting for Fluorescence Lifetime Imaging

Fluorescence Lifetime Imaging Microscopy (FLIM) has gained a prominent role in the

study of biological processes occurring at the cellular and sub-cellular level as it allows high-

sensitivity and non-invasive analysis of tissues. The Time Correlated Single Photon Counting

(TCSPC) technique is a powerful tool to perform FLIM1. A TCSPC measurement basically

consists in the periodical excitation of a sample by means of a pulsed laser and in the record

of the time of arrival of re-emitted photons. The histogram of the recorded time of multiple

photons corresponds to the waveform of the re-emitted light in the time domain and it

can be used to study such waveform2. The extraction of the single- or multi-exponential

lifetime from the histogram, for example, is extremely useful to get an insight not only on

the target element (e.g., a single molecule), but also on its surrounding environment as the

decay time is typically influenced by temperature, pH, and proximity of other elements as

fluorescence quenchers3. The TCSPC approach is clearly advantageous with respect to its

analog counterpart, especially when ultra-fast and weak optical signals have to be measured.

Nonetheless, TCSPC is an intrinsically slow technique: the average photon detection rate

must be kept well below the excitation rate (typical ratio is between 1% and 5%) to avoid

the so-called pile-up distortion2. Moreover, to achieve a proper reconstruction of the time-

domain signal, a statistically-significant number of events has to be collected resulting in a

relatively long acquisition time, especially if a single channel is exploited4.

Multichannel TCSPC acquisition systems: advantages and issues

A real breakthrough in TCSPC analysis would be the reduction of the overall time needed

to perform the measurements. In the complex process of drug discovery, for example, the

exploitation of FLIM analysis to investigate protein interactions could open the way to

determine the exact pathway a candidate drug is modulating and then lead to discovery the

best drug for a given pathology. Unfortunately, one of the most time/cost-consuming stages

of drug discovery is in the identification of drug leads: thousands of samples, which have

been treated with varied dosages of a large number of drug leads, have to be analyzed5.

The use of N channels operating in parallel would reduce the overall time needed to per-

form the measurement by a factor of N. For this reason, in recent years there has been a
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trend towards the development of multichannel TCSPC acquisition systems. Parallelism not

only opens the way to speedup measurement, but it also enables advanced measurements,

as Fluorescence Correlation Spectroscopy (FCS)6, which requires the simultaneous acqui-

sition of data from the same sample at different spots and/or the acquisition of different

wavelengths of the signal at the same time.

Technology has been proven to be ready to develop densely integrated TCSPC acqui-

sition systems featuring hundreds or even thousands of channels7–9. Nevertheless, densely

integrated systems can potentially produce a huge amount of data (in the order of tens of

Gigabits/s), which poses critical issues on data extraction and management. First of all,

such a huge amount of data needs to be extracted from the acquisition system. Various

readout approaches have been proposed to address this issue7,8,10,11. Secondly, collected

information has to be sent to an elaboration unit and processed there. Several solutions

have been conceived at the system level: exploitation of FPGAs along with data compres-

sion mechanism, like histogram creation, significantly reducing the amount of data to be

transferred downstream, has allowed on-board data elaboration9,12–14. However, applica-

tions could require more complex and varied data elaboration: correlation measurements in

FCS, lifetime extraction in FLIM, 3D reconstruction of scenes using single-photon lidar15,

just to name a few. Lifetime extraction, for example, can be carried out following several

approaches: a traditional approach consists in fitting decays at each pixel using one or two

exponentials and identifying decay times and amplitudes with molecular species and their

relative abundances1,16; on the other hand, the recently-developed phasors approach17,18 is

based on a rapid Fourier analysis that translates lifetime information into a graphical rep-

resentation called the phasor plot, in which lifetime differences across various regions of the

image can be easily distinguished. The traditional approach could be carried out on board

when a single time constant is present, but it becomes extremely challenging when multiple

time constants concur to determine the shape of a multi-exponential signal.

Raw data transfer towards a PC can be the solution of choice to achieve very high

accuracy along with the flexibility to perform different types of operations. To make external

elaboration possible, a large bandwidth is required to download the huge amount of data

produced by the acquisition system. Modern communication protocols such as Ethernet

10G and USB 3.1 can provide a transfer rate up to 10 Gbit/s, while optical links can reach

a rate as high as 100 Gbit/s.
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In this scenario, the main bottleneck in the acquisition chain becomes the PC that has

to perform the actual processing of data, which inevitably limits the maximum sustainable

throughput and, as a consequence, the count rate. On the other hand, traditional CPUs are

not the only elaboration units available today. Modern Graphical Processing Units (GPUs)

have shown to be a valid alternative to CPUs for data elaboration, particularly when data-

parallel tasks have to be performed. In particular, the introduction of the Common Unified

Device Architecture (CUDA)19 has opened the way to the exploitation of GPUs in general

purpose computing. In this paper, we present a GPU-based application aimed at achieving

video-rate processing of data based on the traditional exponential fitting. Our solution can

process a TCSPC data stream as high as 10 Gbit/s (Ethernet link) potentially generated by

a 32× 32 SPAD camera.

Paper outline

The paper is organized as follows: Section II describes a high-performance multichannel

TCSPC acquisition system requiring a dedicated data-processing unit; Section III discusses

the choice of a GPU as external elaboration unit and introduces the CUDA API; Sec-

tion IV proposes a GPU-based algorithms for lifetime extraction, Section V evaluates its

performance, comparing it with state-of-the-art solutions. Finally, Section VI draws some

concluding remarks.

II. THE ACQUISITION SYSTEM

Fig. 1 shows a high-level view of the components of a TCSPC acquisition and processing

system. In this section, we focus on the camera and its internals, while next sections discuss

the PC.

The camera, under development at Politecnico di Milano, aims at breaking the tradeoff

between number of channels and performance that currently limits the available TCSPC

acquisition systems.

A high-performance TCSPC acquisition system should provide high Photon Detection

Efficiency (PDE), combined with low noise (Dark Count Rates and afterpulsing), low timing

jitter, and high linearity. Moreover, the speed of the system is a key factor in a large number

of applications, as discussed in the introduction. Among currently-available systems, the
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FIG. 1: The architecture of our system

best performance in terms of jitter and linearity are provided by timing commercial boards

(not including the detector) which have been limited so far to a low number of channels (up

to 8), while systems featuring hundreds or even thousands of channels have been designed

exploiting the standard CMOS technology to integrate both the detector and the timing

electronics on the same chip, but their performance are quite poor compared to the best

single- or few-channels systems.

To overcome this tradeoff, a new approach has been proposed at Politecnico di Milano,

which exploits different technologies for the various parts of the system, each one specifically

selected to optimize a single aspect of the problem20. The system targets the use of custom-

technology SPAD detectors, which have been proven to provide best-in-class performance

in terms of a combination of PDE, noise, and detector jitter21. These detectors require

dedicated electronics developed on purpose to attain the best performance, and in fact,

in the past few years several dedicated circuits have been presented in the literature22–24,
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paving the way to the development of such a high-performance densely integrated TCSPC

system.

Now, if we consider, for example, a 32× 32 detector array, the system could pose crucial

issues on data management, first and foremost the amount of data generated. Indeed,

considering a typical excitation rate of 80 MHz and a detector count rate of 4 Mcps, with

a timing measurement circuit associated to each pixel featuring two bytes to encode the

timing information, the amount of data produced during a TCSPC measurement would be

as high as 64 Gbit/s. Depending on the readout mechanism, this amount of data could

be further increased by the data needed to identify the source pixel of each readout in the

32×32 detector array, resulting in a data rate that may exceed 100 Gbit/s: an amount that

is hard to manage.

Moving from this consideration, the camera under development at Politecnico di Milano

has been designed starting from the data rate that can be reasonable handled by currently

available technology: a target throughput of 10 Gbit/s. Such an amount of data will be

generated exploiting five conversion circuits20 along with 10 bits to address the 32× 32 de-

tector array pixels. The exploitation of only five conversion circuits shared with a 32 × 32

detector array poses tight constraints on the resource sharing mechanisms to avoid distor-

tions and inefficiencies. Acconcia et al.20 proposed in 2016 a smart routing algorithm for

data extraction in densely integrated TCSPC imagers, which has been proven to outperform

the alternative readout solutions proposed so far25. This smart routing algorithm is able to

extract five signals out of a 32× 32 SPAD array at each excitation cycle and under any op-

erating condition, while providing a fair treatment of the detectors to avoid any distortion.

In this way, the acquisition system can truly generate a throughput as high as 10 Gbit/s,

that can be transferred to the elaboration unit using a standard 10 Gbit/s Ethernet link.

In particular (see Fig. 1), UDP datagrams encapsulated into Ethernet frames are built

on board by the camera using a dedicated FPGA module and transferred using an off-the-

shelves transceiver (i.e., an optical fiber physical module).

III. DATA PROCESSING ON A GPU

Managing data produced at the rate of 10 Gbit/s pushes the hardware of modern com-

puters to its limits. As a reference, the best Solid State Disks (SSDs) nowadays provide
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between 5 Gbit/s (SATA III) and 16 Gbit/s (NVME) sequential write capabilities, depend-

ing on their connecting interface, and they are rarely bigger than 1 TByte (at 10 Gbit/s

they would fill in few minutes). These numbers show the technical difficulty of even reading

and storing data received at the rate of 10 Gbit/s, and motivate the need for video-rate

processing of raw data.

Fortunately, the problem we address in this paper has the advantage of being intrinsically

data parallel, meaning that it requires the very same computation to be performed on multi-

ple partitions of the input data (32× 32 = 1024 partitions in our case, one for each detector

array pixel). Graphical Processing Units (GPUs) provide much better performance than

CPUs in data-parallel tasks, and the CUDA platform offers an innovative Single Program

Multiple Data (SPMD) programming model and a new instruction set to leverage GPUs for

general purpose programming.

The remainder of this section presents the key aspects of the programming and execution

models in the CUDA platform. Next, Section IV will explain how these aspects influenced

the design of our algorithm.

CUDA Programming and Execution Model

Kernels. In CUDA, developers define computations to be performed on the GPU as special

functions denoted kernels, which outline a single flow of execution for multiple threads,

organized into groups called blocks. When invoking a kernel k, developers specify the number

of blocks to be used and the number of threads within each block. The kernel code has access

to two special variables provided by the CUDA runtime: the blockId and the threadId,

which together uniquely identify each thread among those executing the kernel. Blocks are

independently scheduled for execution on the GPU when enough resources become available.

Execution model. Within each block, threads are further split in small groups of 32

threads called warps. Full hardware utilization can be achieved only if all the threads within

a warp execute the exact same instructions, that is, if they do not differ in terms of control

flow.

Separation of host and device. CUDA kernels execute on a physically separate device

(the GPU), which operates as a co-processor for a host (the CPU) running a C/C++ pro-

gram. The host and the device maintain their own separate memory spaces. Therefore,

before starting a computation, it is necessary to explicitly allocate memory on the device
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and copy the data needed during execution there. Similarly, at the end of the computation,

results must be copied from the device to the host memory, and the device memory must

be deallocated.

Memory model. CUDA threads may access data from multiple memory spaces during

their execution: each thread has a private local memory for automatic variables; each block

has a shared memory visible to all threads in the same block; finally, all threads have access

to the same global memory. In this hierarchy, local memory is the fastest but smallest and

global memory is the largest but slower. The memory access pattern (to global and shared

memory) also affects performance. If threads with contiguous ids access contiguous memory

locations, the hardware can organize the interaction into several memory-wide operations,

thus maximizing throughput, otherwise memory access may easily become a bottleneck for

most algorithms.

Synchronization. CUDA offers two main classes of synchronization constructs: (i) bar-

rier synchronization within individual thread groups, (ii) atomic operations on individual

variables, such as atomic compare-and-set on numerical values.

IV. LIFETIME EXTRACTION IN CUDA

Lifetime extraction can be decomposed in two phases: first, readings coming from each

detector are aggregated into a histogram that counts the number of photons that fall into

each delay interval; second, histograms are analyzed to determine the time constants (one or

more) that describe the lifetime decay rule of the specific molecules under examination. In

the remainder we denote these two phases counting and lifetime extraction, respectively. In

our solution, both steps are performed by a PC that receives data produced by the camera

through a 10 Gbit/s Ethernet, as shown in Fig. 1.

Protocol

We designed a simple protocol to transfer readings from the camera to the PC. It encodes

each reading using 24 bits: 10 bits represent the address of the detector in the 32×32 array,

while the remaining 14 bits represent the actual delay measured. Readings are packed into

UDP datagrams by the FPGA of the camera as soon as they are produced, with no further

processing. Each datagram holds 3200 readings, i.e., 9600 bytes, which is enough to limit
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the total number of packets while avoiding fragmentation, since the Ethernet card we use

(Intel 82599ES) supports jumbo frames up to 9700 bytes.

The FPGA of the camera is the master of the entire process and controls PC operations.

When enough readings are collected (this is a design parameter whose impact on performance

will be studied in Section V) a special end-of-frame datagram is sent. This is the only

datagram that is acknowledged by the PC and resent if no ack is received.

Receiving data and counting on the PC

The PC receives UDP datagrams, extracts the data they contain, and collects it in RAM,

before starting the counting phase.

Counting is a relatively easy algorithm whose goal is to fill 32× 32 = 210 = 1024 integer

arrays (the histograms), each holding 214 = 16384 elements. At the end of the counting

phase, position D of histogram A holds the number of photons observed by detector A after

delay D from the laser excitation. In practice, from each reading we extract address A (first

10 bits) and delay D (last 14 bits) and we increment histogram A at position D.

This simple algorithm has a negligible computational cost but is very expensive in terms

of memory accesses. The total memory occupied by the histograms for each frame is at least

(if we use a short int, i.e., 16 bits, for each counter) 32× 32× 16384× 2 = 32 MB, which is

larger than the cache size of most microprocessors (the i7-8700 CPU we use has 12 MB of

cache). This results in a large number of cache misses and the latency of the RAM used in

PCs is not sufficient for our needs. Indeed, DDR4 RAM has around 14 ns of latency, which

means a program may access at most 70 M “cells” per second if this latency has to be payed

at each access. In practice, by implementing the counting step on the CPU we were not able

to “count” more that 180 M readings per second, which is far from our target of 10 Gbit/s,

i.e., 426 M readings per second. Moving from this observation, we decided to implement the

counting step on the GPU, where it can be easily parallelized and can leverage the much

faster GDDR5X RAM.

The resulting algorithm works as follows: the CPU interacts with the networking con-

troller (NIC in Fig. 1) to receive UDP datagrams, extract their payload, i.e., the camera

readings, and collect them in RAM with no further processing. When the end-of-frame

packet is received, the CPU initiates a memory transfer of the collected readings from the

CPU to the GPU and launches the counting kernel. This kernel uses as many parallel
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threads as the number of cores available in the GPU (3584 threads in the GPU we use for

our experiments). Each thread takes a portion of the readings, decodes them, separating the

address from the delay, and increments the corresponding element of the appropriate his-

togram. Each increment is performed as an atomic operation using a atomicInc primitive

offered by CUDA.

While the memory transfer happens and the kernel runs on the GPU, the CPU (using

a separate data space) starts receiving the next frame. This way we may overlap CPU

and GPU tasks, maximizing the usage of available processing resources. As an additional

optimization, we also repeat the read-transfer-count sequence above 8 times before actually

starting the next phase. This allows to fully exploit the GPU hardware for the lifetime

extraction operation.

Lifetime extraction

Differently from counting, lifetime extraction is indeed a complex and computationally in-

tensive task. Each histogram represents the sum of one or more exponential decay functions

whose main parameters must be identified.

In this work we consider the cases of one or two exponential decays plus a noise factor,

which represent the most common cases for our applications. These two cases are modeled

by the equations below:

y = µ+ β eαx (1)

y = µ+ β1 e
α1x + β2 e

α2x (2)

and lifetime extraction is the problem of finding the values µ, α, β or µ, α1, α2, β1, β2 in these

formulas, which better approximate the data we have (i.e., the histograms).

This is a regression problem complicated by the fact that the functions to approximate

are exponential and include a constant (noise) factor, such that easily reduce them to a

linear regression problem. Moreover, to reach the level of performance we target, we need a

non iterative regression algorithm.

This can be obtained along the lines suggested in26, which we report here for the case of

a single exponential function. In particular, integrating equation (1) we obtain:∫ x

x0

y(u) du = µ(x− x0) +
β

α
eαx − β

α
eαx0
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and reusing equation (1) for the second term of the right hand side of the equality, we obtain:∫ x

x0

y(u) du = µ(x− x0) +
y − µ
α
− β

α
eαx0

which we can rewrite as:

y − (µ+ β eαx0) = α

∫ x

x0

y(u) du− µα(x− x0)

If we calculate this formula for x = x0 we derive:

y0 = (µ+ β eαx0)

such that:

y − y0 = α

∫ x

x0

y(u) du− µα(x− x0)

The definite integral Sk =
∫ xk
x0
y(u) du can be easily approximated using the trapezoidal

rule, yielding: S0 = 0 for k = 0

Sk = Sk−1 + 1
2
(yk + yk−1)(xk − xk−1) for k = 1..n

such that we can derive:

yk − y0 ' −µα(xk − x0) + αSk

To determine factors µ, β, and α, we minimize the sum of squares:

n∑
k=0

(A(xk − x0) +B Sk − (yk − y0))2

where A = −µα and B = α. This is a linear regression problem whose solution is:A
B

 = M−1 ·N (3)

where:

M =


n∑
k=0

(xk − x0)2
n∑
k=0

(xk − x0)Sk
n∑
k=0

(xk − x0)Sk
n∑
k=0

S2
k


and

N =


n∑
k=0

(yk − y0)(xk − x0)
n∑
k=0

(yk − y0)Sk
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By calculating B from formula (3), we may find a good approximation of the main parameter

of our exponential: α = B.

To find µ and β we go back to equation (1) and we use squared error minimization again,

by minimizing:
n∑
k=0

(µ+ β eαxk − yk)2

The solution of such linear regression problem is:µ
β

 =

 n
n∑
k=0

eαxk

n∑
k=0

eαxk
n∑
k=0

(eαxk)2


−1 

n∑
k=0

yk

n∑
k=0

yke
αxk

 (4)

In summary, our approximation algorithm computes, for each histogram, the elements of

matrices M and N above to determine α = B using equation (3), then it computes µ and β

using equation (4). A similar approach is used to approximate the double exponential decay

given by equation (2). In this case, we use the formulas in Formulas 1.



A

B

C

D

E


=



n∑
k=0

SS2
k

n∑
k=0

SSkSk
n∑
k=0

SSkx
2
k

n∑
k=0

SSkxk
n∑
k=0

SSk

n∑
k=0

SSkSk
n∑
k=0

S2
k

n∑
k=0

Skx
2
k

n∑
k=0

Skxk
n∑
k=0

Sk

n∑
k=0

SSkx
2
k

n∑
k=0

Skx
2
k

n∑
k=0

x4k

n∑
k=0

x3k

n∑
k=0

x2k

n∑
k=0

SSkxk
n∑
k=0

Skxk
n∑
k=0

x3k

n∑
k=0

x2k

n∑
k=0

xk

n∑
k=0

SSk
n∑
k=0

Sk
n∑
k=0

x2k

n∑
k=0

xk n



−1

·



n∑
k=0

SSkyk

n∑
k=0

Skyk

n∑
k=0

x2kyk

n∑
k=0

xkyk

n∑
k=0

yk


where: 

S0 = 0 for k = 0

Sk = Sk−1 + 1
2
(yk + yk−1)(xk − xk−1) for k = 1..n

SS0 = 0 for k = 0

SSk = SSk−1 + 1
2
(Sk + Sk−1)(xk − xk−1) for k = 1..n

allows to calculate: α1 = 1
2
(B +

√
B2 + 4A

α2 = 1
2
(B +

√
B2 − 4A

while µ, β1, and β2 are obtained from:


µ

β1

β2

 =


n

n∑
k=0

eλ1xk
n∑
k=0

eλ2xk

n∑
k=0

eλ1xk
n∑
k=0

(eλ1xk )2
n∑
k=0

eλ1xk eλ2xk

n∑
k=0

eλ2xk
n∑
k=0

eλ1xk eλ2xk
n∑
k=0

(eλ2xk )2



−1

·



n∑
k=0

yk

n∑
k=0

eλ1xkyk

n∑
k=0

eλ2xkyk



Formulas 1: Formulas to solve the double exponential regression problem

Both in the case of a single exponential decay and in the case of a double exponential

decay, we execute the algorithm in parallel on the GPU using one thread for each histogram

(out of 32 × 32 × 8 = 8192 histograms). Since the computation of each histogram is inde-

pendent with respect to the others, differently from the counting phase, in this case there
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is no need for synchronization among threads. Moreover, all threads execute the very same

sequence of instructions: they access different data elements (histograms) but their control

flow does not differ. As mentioned in Section III this maximizes GPU utilization.

To further optimize processing, histograms filled by the counting kernels are stored in

GPU’s global memory as a huge, single array, which first contains all the elements in position

0 for all the histograms, then all the elements in position 1, and so on. In this way, when

the lifetime extraction kernel accesses element i in the histograms, all threads that run such

kernel access contiguous memory regions, and the GPU can fully exploit its wide access

memory bandwith to load data from global memory, while all intermediate results required

to compute formulas above fit in the fast local memory of each thread.

While the use of GPUs to speed up FLIM has been proposed in recent work27, the

approach on a different analog mean-delay method that could not capture double-exponential

decaying, as we do.

V. EVALUATION

To evaluate the effectiveness of our solution we have to show that it is capable of perform-

ing the lifetime extraction task at the expected speed (10 Gbit/s) with a precision comparable

with that of state-of-the-art tools. These two aspects are detailed in the sub-sections below.

The PC we use in our evaluation is an off-the-shelf machine equipped with an Intel i7-

8700 CPU (6 cores, 12 threads) and 64 GB of DDR4 RAM. The CUDA card we use is an

NVIDIA Titan X GPU with 12 GB of on-board GDDR5X RAM.

A. Speed

As a first test we connected the processing PC with the networking module of the camera

(i.e., the FPGA that implements the UDP communication protocol and the transceiver that

implements the physical protocol, as in Fig. 1), using an Intel 82599ES 10 Gbit/s Ethernet

card on the processing PC and an optical fiber link as a cable. On the camera-side we

generate samples at the maximum rate allowed by the network card and we measured if the

PC was able to process such data rate. We also repeat this experiment using a second PC

in place of the camera. Even in this case the second PC generates samples at the maximum
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decays readings throughput

single

1000 10.60 Gbit/s

2000 13.92 Gbit/s

3000 15.01 Gbit/s

4000 15.58 Gbit/s

5000 15.96 Gbit/s

double

5000 10.38 Gbit/s

10000 12.90 Gbit/s

20000 14.65 Gbit/s

30000 15.42 Gbit/s

40000 15.71 Gbit/s

50000 15.86 Gbit/s

TABLE I: Sustainable throughput.

rate allowed by the network card and sends them to the processing PC, using the same

UDP based protocol implemented by the camera (see Sections II and III). In both cases we

verified that the processing PC was able to effectively process 10 Gbit/s of data, with the

Ethernet link being the bottleneck of the whole system.

Afterwards, in order to measure the raw performance of our processing sub-system, re-

moving the potential bottleneck of the network link, we repeated our measures, this time

running both the data generator and the data processing application on the same machine,

communicating through UDP datagram as in the previous case, but using the loopback

interface as the underlying networking link. Table I shows the results we measured.

As discussed in Section IV, our algorithm consists of two phases: counting and lifetime

extractions, with the second being more computationally expensive than the first. As a con-

sequence, the more readings we collect and count before launching a lifetime extraction, the

more data we are able to process per second, as confirmed by the results of our experiments.

This reflects in Table I, where we notice that for a single exponential decay we reach and

pass our target of 10 Gbit/s by processing 1000 readings per detector. For a 32× 32 camera

this means collecting ≈ 1 M readings. Since each reading is encoded in 3 bytes, this means

processing more than 430 “camera frames” per second.
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FIG. 2: Comparison with real life data

The case of double exponential decays is more complex and we need to process 5000

readings per detector to reach our target. Next section shows that this is also the lowest

possible number of readings if we want to approximate our double decay with a sufficient

precision. By repeating the calculations above, we observe that taking a snapshot every

5000 readings means processing more than 86 “camera frames” per second.

B. Precision

To evaluate the precision of our algorithm, we compare it against the off-line regression

algorithms provided by the MATLAB Curve Fitting Toolbox 28. It represents a ready-to-use,

state-of-the-art solution when speed of calculation is not fundamental. Indeed, using an

iterative algorithm, MATLAB continues processing until the required precision is reached.

This comparison is performed both on real life data and on syntetic data. The latter

analysis is fundamental to study how the various parameters of the decay phenomena under

study affect the precision of our algorithm.

Real life data

Fig. 2 shows the results we measured using FLIM data acquired with a 32x1 module29 that

captures the fluorescence lifetime of Coumarin 6 (details can be found in30). In particular,

we had data from several experiments (the reading of each of the 32 detectors) made under
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parameter range

num. readings 5000 ÷ 50000

λ1 0.001 ÷ 0.01

λ2 0.0001 ÷ 0.0009

% of noise readings 0.1% ÷ 1%

β1/β2 0.25 ÷ 4

TABLE II: Parameters.

different conditions (different laser data rate). For each experiment we measure the error

made by the two algorithms in calculating the rateo of the decay and we plot the distribution

of such error in Fig. 2. It shows how the error performed by our CUDA algorithm is lower

(more precisely, it has a better distribution) than the error made by MATLAB and this

is true independently from the number of readings we considered (1000 or 5000). Fig. 2

also shows how an increased number of readings is beneficial both to our algorithm and to

MATLAB.

Synthetic data

To precisely evaluate how the various parameters of the decay affect the precision of

our algorithm, we generate random readings that follow a given decay curve and compare

the two algorithms in terms of their ability in capturing the parameters of the decay. In

particular, we focus on double exponential decay as this is the hardest case to fit and it is

affected by many more parameters. Below we rewrite the formula that describes such decay

(equation 2 in Section IV) using λi = −αi to put in evidence the fact that we are studying

“decays”, i.e., negative exponentials:

y = µ+ β1 e
−λ1x + β2 e

−λ2x

Table II lists the main parameters we considered in our comparison, with the typical

ranges that we encounter in biological analysis. For each case we generate 50 sets of data,

using different seeds for the random generator, and we calculate the average and 90% confi-

dence interval of the error made by MATLAB and by our fitting algorithm in capturing the

parameters of the decay: λ1, λ2, and the ratio β1/β2.

Fig. 3 shows the results we measured with the smallest number of readings we consider
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FIG. 3: Comparison with 5000 readings, λ1 = 0.01, ratio = 0.25, noise = 0.1%

(5000), when varying λ2, with λ1 = 0.01, ratio = 0.25, and noise = 0.1%. We may

appreciate that the error of our CUDA algorithm is low in absolute terms (in most cases less

than 5%) and it is comparable if not lower than the error of MATLAB, which is a very good

result if we consider that the latter requires an average of 100 ms to fit each curve (that is,

each detector) while our algorithm can fit all 32× 32 = 1024 detectors in 11 ms.

A closer look to Fig. 3 shows that the largest error we make (close to 8%) is on estimating

λ1. This is expected, since a ratio of β1/β2 = 0.25 means we have less readings for λ1 than

for λ2. Indeed, the results improve when we increase the absolute number of readings –

Fig. 4(a) – or the ratio – Fig. 4(b).

For space reasons we omit the results we got when varying the ratio and the noise: they

are very similar to those presented so far.

Fig. 5(a) shows the precision when λ1 changes. The error in estimating our parameters

(especially the ratio) grows considerably when λ1 and λ2 get close. However, the iterative

MATLAB algorithm suffers similarly if not more than our algorithm in these conditions,

17



0.0001 0.00025 0.0003 0.0005 0.0006 0.00075 0.0009
L2

0

5

10

15
L1

 e
rr 

%
Alg

cuda
mlab

0.0001 0.00025 0.0003 0.0005 0.0006 0.00075 0.0009
L2

0

5

10

15

L2
 e

rr 
%

0.0001 0.00025 0.0003 0.0005 0.0006 0.00075 0.0009
L2

0

5

10

15

R
at

io
 e

rr 
%

(a) 50000 readings, ratio=0.25
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(b) 5000 readings, ratio=0.5

FIG. 4: Comparison with λ1 = 0.01, noise = 0.1%.

which suggests that the problem is complex per se. Fig. 5(b) shows that the situation gets

better when the number of readings is increased to reach 50 K, but it is still critical for very

close values of λ1 and λ2.
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(a) 5000 readings
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(b) 50000 readings

FIG. 5: Comparison with λ1 = 0.001, ratio = 0.25, noise = 0.1%

VI. CONCLUSIONS

In this paper, we presented a GPU-based algorithm that performs accurate lifetime ex-

traction from TCSPC data. The algorithm enables video-rate processing of a TCSPC datas-

tream up to a rate of 10 Gbit/s, potentially generated by a 32×32 SPAD camera. We study

both the processing performance and the precision of the algorithm, and demonstrate that it

can reach comparable or better precision with respect to state-of-the-art iterative algorithms

at a fraction of their execution time.
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