ConSysT: Tunable, Safe Consistency meets
Object-Oriented Programming (Short paper)

Mirko Kohler

Technische Universitat Darmstadt
koehler@cs.tu-darmstadt.de

Alessandro Margara
Politecnico di Milano
alessandro.margara@polimi.it

Abstract

Data replication is essential in scenarios like geo-distributed
datacenters and edge computing, but it poses a challenge
for data consistency. Developers either adopt Strong consis-
tency at the detriment of performance or they embrace Weak
consistency and face a higher programming complexity.

We argue that language abstractions should support as-
sociating the level of consistency to data types. We present
ConSysT, a programming language and middleware that pro-
vides abstractions to specify consistency types, enabling
mixing different consistency levels in the same application.
Such mechanism is fully integrated with object-oriented pro-
gramming and type system guarantees that different levels
can be mixed only in a correct way.

1 Introduction

In scenarios like edge computing, or geo-distributed data-
centers, data replication is critical to achieve scalability, low
access latency and fault tolerance. Keeping replicas consis-
tent in the presence of data modifications poses a challenge
to the underlying system and developers. Recently, many
consistency models have been proposed each having their
own trade-offs between consistency and availability or per-
formance. For example, Strong consistency models, such as
Sequential Consistency, do not allow concurrent modifica-
tions and require blocking coordination between replicas.
While Strong consistency reduces programming complexity,
it also reduces availability as immediate coordination is re-
quired. On the other hand, Weak consistency models defer
coordination between replicas, which increases availability,
but also complicates reasoning about programs as data can
be temporarily inconsistent. As there is no one-size-fits-all
solution, the choice of a consistency model for an applica-
tion becomes complex. Developers are keen towards Weak
consistency to boost availability, but Strong consistency is a
better choice when the application correctness is at risk. To
make things worse, applications often require different con-
sistency models in the same software, e.g., payment requires
Strong consistency, whereas Weak consistency suffices for
instant messaging. This is not an easy feat as developers
have to (a) know the consistency models of replicated data

1
2
3
4
5
6
7
8

Nafise Eskandani
Technische Universitat Darmstadt
n.eskandani@cs.tu-darmstadt.de

Guido Salvaneschi
Technische Universitat Darmstadt
salvaneschi@cs.tu-darmstadt.de

class Counter {
int i;
Counter(int i) { this.i
void inc() { i =1 + 1;
transaction(() -> {
Ref<@Sequential Counter> counter =
Counter.class,

=1i; 3
Y

Sequential, Q) ;

D
Figure 1. Running example.

replicate("id",
counter.ref().inc();

to infer the guarantees, (b) ensure that data with different
consistency models is mixed correctly, and (c) reason about
concurrency when mixing consistency models.

We propose ConSysT, a language for distributed program-
ming featuring fine-grained, data-centric specification of
consistency levels. ConSysT features a static type system to
ensure that data with different consistency levels mix safely.
It supports (weak) transactions and is integrated into object-
oriented programming to ease the adaption by developers.

2 Overview

In this section, we introduces ConSysT’s core concepts — dis-
tribution through replication, consistency, and correctness.

Distribution We consider a system model where programs
are divided into (logically) single-threaded processes running
in parallel. Replicated data is modelled as replicated objects
and each process holds its own local copy of a replicated ob-
ject. Distributed operations are performed by calling methods
on replicated objects.

Figure 1 shows how to replicate a counter in ConSysT.
Therefore, we first start a transaction on the replicated store
(Line 5), then we create the replicated Counter object by
instantiating the class with replicate (Line 7). This returns
a reference Ref to the replicated object. When creating the
replicated object, the developer names the object, "id" in
the example, so that it can be referred to by other processes.
Developers use references Ref to perform operations on repli-
cated objects. Operations are prefixed with ref to make re-
mote accesses explicit. For example, a Counter object has
the operation inc, which can be performed by calling the
respective method on the reference (Line 8).



Expr>e u= x| Ref@l(p)
Computation 3 ¢ == skip | let x = tx(¢)inc | returne | ...
Transaction 3t == let x := replicate(p, ¢, C,e)int | t;t
| let x := e.m(e)int | returne | ...

Program > P == c¢1,...,¢p

D u=  class Cy extends Cy {F; M}

M = mm(rx){t}
ConsLevel 5 ¢ == Sequential | ...
ConsType 57 == C@Cl

Figure 2. Syntax of the core calculus.
Evrelo

o=cl@ & =65-(p—o0) E =E-(x Ref@l(p))

((let x = replicate(p, ¢, C,e)in ¢, E, A, §, k1))
> ((t, E, A &, k1))

Figure 3. Example transition rule.

Consistency How the operation is executed depends on
the consistency level of the replicated object. The consistency
level describes the consistency model - such as sequential, or
causal consistency — which is used to keep replicated objects
consistent with other replicas. In ConSysT, the developer has
fine-grained control over the consistency of replicated data,
as every replicated object defines its own consistency level.
In the example, we create a replicated Counter using the
consistency level Sequential (Line 7).

Operations performed on a Sequential replicated object
are propagated using the sequential consistency model. All
fields of the replicated object use the same consistency level
as the object itself. Yet, a replicated object can also contain a
reference to other replicated objects that define their own
consistency levels. Thus, ConSysT enables mixing replicated
data in two ways: (a) the same operation can contain repli-
cated objects with different consistency levels, or (b) repli-
cated object can be nested, i.e., a replicated object can have
a field that is a reference to another replicated object.

Language We formalize our language with the syntax out-
lined in Figure 2. Programs P consist of parallel processes c;,
where each process executes transactions ¢ on a replicated
store. Object-oriented features like classes and methods are
based on Featherweight Java [3]. ConSysT adopts consistency
types 7 to enable static reasoning about the consistency level
of objects. For example, the consistent level Sequential ap-
pears in the type of the replicated Counter in its type as
@Sequential (Line 6 of Figure 1).

For the operational semantics, we have a replicated store
model, where replicas have a transaction local state § that is
merged into a global store A [4]. The operational semantics
defines transitions for transactions ¢ with a local variable
environment E: ((t,E,A,§, k1)) » ({t',E’,A",§', kL)) . We
use continuations k+ to model operations waiting for concur-
rent transactions. Figure 3 exemplifies the rule for replicate.
The rule evaluates expressions v and creates a new object o
which is then stored in the local store §. The changes in the
local store are written to the global store A by the rule for
transactions (omitted for brevity).

Correctness When consistency levels are mixed, it is im-
portant that the language supports developers in tracking
and correctly mixing objects with different consistency levels.
In ConSysT, we formalize an information-flow type system
for consistency types that uses that subtyping relation to
ensure that Strong objects do not depend on Weak objects.
Such a flow can degrade consistency guarantees [6]. The
type system is parametric in the concrete consistency levels:
Consistency levels are ordered in a lattice [1, 9] that defines
the subtyping relation for consistency types.

We prove that in well-typed programs, Strong values can-
not be affected by Weak values (non-interference) and that
stores can only differ in consistency levels that are weaker
then a given level £, i.e., inconsistencies in stores can only
appear in weaker consistent objects. We define two stores §;
and J, to be indistinguishable up to a consistency level £, when
all objects in the store that have at least the level £ are equiv-
alent. The non-interference property then states that two
stores that are indistinguishable before the execution of a
well-typed program are indistinguishable after the execution
of the program, giving us the guarantee that inconsistencies
only appear in weaker consistency levels.

3 Related Work

Mixing consistency has been tackled in several works. Holt
et al. [2] use consistency types and the notion that type
safety implies consistency safety. However, their type sys-
tem does not consider control dependencies — hence we
adopt an information-flow type system in ConSysT. RedBlue
Consistency [5] defines two consistency levels to label oper-
ations red, i.e. Strong, or blue, i.e. Weak, consistent. Opera-
tions have to be labeled red, when they violate application
invariants if executed concurrently. MixT [6] is a DSL for
transactions over multiple datastores with different consis-
tency levels and different semantics for operations. A type
system enforces correct mixing of such levels. In contrast,
ConSysT integrates consistency-levels into an object-oriented
programming model and does not assume different seman-
tics for datastores.

Instead of using consistency levels directly on data, as in
ConSysT, another approach is to annotate operations. Que-
lea [8] allows developers to define invariants on functions
which result in a consistency guarantee on the ordering rela-
tions of operations. Gallifrey [7] is a language for replicated
objects. In Gallifrey, developers define restrictions on op-
erations in the form of conditions. Instead, in ConSysT, the
data-based approach alleviates the definition of consistency
as developers do not need to write special invariants.

References

[1] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. 2013. Highly Available Transactions: Virtues and
Limitations. PVLDB.



(2]

3

—

(4]

(5]

Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin,
and Luis Ceze. 2016. Disciplined Inconsistency with Consistency Types
(SoCC ’16). ACM, 15.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. 1999. Feather-
weight Java: A Minimal Core Calculus for Java and GJ. In Proceed-
ings of the 14th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’99). As-
sociation for Computing Machinery, New York, NY, USA, 132-146.
https://doi.org/10.1145/320384.320395

Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagan-
nathan. 2017. Alone Together: Compositional Reasoning and Inference
for Weak Isolation. Proc. ACM Program. Lang. 2 (2017), 27:1-27:34.
Cheng Yen Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.
Preguica, and Rodrigo Rodrigues. 2012. Making Geo-Replicated Systems

Fast as Possible, Consistent when Necessary (OSDI ’12). USENIX.

[6] Matthew Milano and Andrew C. Myers. 2018. MixT: A Language for
Mixing Consistency in Geodistributed Transactions (PLDI '18). ACM.

[7] Matthew Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers.
2019. A Tour of Gallifrey, a Language for Geodistributed Programming
(SNAPL ’19). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[8] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015.
Declarative Programming over Eventually Consistent Data Stores (PLDI
’15). ACM.

[9] Paolo Viotti and Marko Vukoli¢. 2016.  Consistency in Non-
Transactional Distributed Storage Systems. CSUR (July 2016).


https://doi.org/10.1145/320384.320395

	Abstract
	1 Introduction
	2 Overview
	3 Related Work
	References

