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Abstract

Many applications adopt graph data structures to model rela-
tions between entities, which continuously change over time.
Reasoning on the temporal evolution of large-scale graphs is
challenging, as it involves studying how events such as the
addition or removal of an edge affect the structure and prop-
erties of the graph. We present our ongoing research on the
definition of abstractions and processing mechanisms to rea-
son on dynamic graphs. We propose a data and processing
model and a system architecture that supports them. We dis-
cuss preliminary results and show our plans for future work.

1 Background and Motivations
Graph-based data structures model relations between enti-
ties in many diverse applicative domains: social networks
include “follower” relations among users, e-commerce web-
sites link products to customers who buy and review them,
maps connect locations with roads. In most scenarios, enti-
ties and relations evolve over time: for instance, social net-
works can receive thousands of new posts every second. In
this context, capturing relevant patterns in the temporal evo-
lution of graphs enables prompt reactions to critical situa-
tions. For instance, forecasting how road congestions can
propagate over time might help navigation systems suggest
alternative routes. Similarly, detecting sudden changes in
the reviews of products can help e-commerce websites de-
tect spammers, improve user experience, or optimize adver-
tisement campaigns.

Over the last decade, several approaches have been pro-
posed to perform computations over large-scale graph data
structures. They range from graph databases that propose
query languages to search for subgraphs having a specific
shape (Angles and Gutierrez 2008), to processing abstrac-
tions that compute relevant results from graphs, such as
vertex-centric abstractions pioneered by Pregel (Malewicz et
al. 2010) and now available in most big data platforms (Gon-
zalez et al. 2014). However, most of these approaches
work on static graphs and neglect the temporal dimension.
At the same time, composite event recognition (CER) sys-
tems offer abstractions and mechanisms to reason about
continuous streams of events (Cugola and Margara 2012;
Giatrakos et al. 2019). However, most of these systems
do not support reasoning about large-scale evolving state as
necessary in graph-based applications.
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Figure 1: Data and processing model

In summary, devising suitable abstractions and processing
techniques to reason on the dynamic evolution of large-scale
graphs remains an open problem. The talk will present our
ongoing research, summarized in the following Section 2. It
will discuss a data and processing model to reason on the
temporal evolution of large-scale graphs, present implemen-
tation strategies and preliminary results, explore open prob-
lems and suitable research directions.

2 Reasoning on Dynamic Graphs
We overview our proposal for integrating graph computa-
tions and temporal pattern evaluation to build a system that
captures the evolution of large-scale dynamic graphs.

Data and processing models Figure 1 shows a conceptual
overview of our proposed data and processing models. A
temporal reasoning system stores a graph that continuously
evolves over time according to a stream of input graph up-
dates. Users install patterns that predicate over the temporal
evolution of the graph, and the system notifies them when
some of the installed patterns occur.

We assume vertices and edges to have associated proper-
ties, which we denote as their state. The input stream con-
tains time-annotated updates: addition and removal of ver-
tices or edges, or updates to the value of their state. Pattern
evaluation is triggered by input updates: whenever an up-
date is received, the system evaluates all installed patterns
and outputs a notification of detection for each and every
pattern that is satisfied. Patterns predicate on the values re-
sulting from computations on the graph that take place at
different points in time. In our current prototype, computa-
tions can derive new values starting from the state of indi-
vidual vertices/edges or groups of them, for instance using
vertex-centric programs to compute values and aggregations
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Figure 2: System architecture

to compose them. Patterns capture the temporal evolution of
graphs by correlating the results of computations at different
points in time.

System infrastructure We implemented our model in a
distributed system having the architecture presented in Fig-
ure 2. It adopts a master-slave approach where a master re-
ceives input updates and coordinates the work of several pro-
cessing nodes that can be deployed on the same or different
physical machines for scalability. In summary, the system
comprises the following layers.
Storage. The graph is partitioned across nodes, each of them
storing its partition in main memory for improved access
time. Nodes store the current state of the vertices and edges
in their partition, as well as previous states that might still
be useful for pattern detection.
Deployment. The deployment layer is responsible for as-
sociating vertices and edges with nodes. Currently, we im-
plement a deployment strategy that balances the number of
vertices and edges associated with each node. Arguably, de-
ployment is the most critical component of the architecture,
as it influences the distribution of processing and the need
for costly inter-node communication and coordination.
Graph processing. This processing layer is responsible for
executing graph computations (on the current or on some
previous state of the graph). We currently provide a li-
brary of computations, including several vertex-centric al-
gorithms, and we plan to extend to different classes of al-
gorithms in the future. During computations, nodes can di-
rectly exchange data with each other. If necessary, the mas-
ter can act as a synchronization point: for instance, vertex-
centric computations work in phases which are controlled by
the master.
Temporal reasoning. Temporal reasoning correlates the re-
sults of graph computations at different points in time and
implements the temporal pattern recognition logic. We
adopt a hierarchical approach, where individual nodes per-
form all the steps that are possibile based on their local view

of the graph, and the master integrates the contributions of
multiple nodes. Temporal reasoning governs the execution
of graph processing, starting expensive computations only
when strictly necessary for the detection of patterns.

Current results and future work We implemented the
architecture in Figure 2 as a JVM-based system on top
of an actor-oriented framework. Our preliminary evalua-
tion shows that: (i) most graph processing computations
scale linearly with the number of nodes and provide per-
formance on a par with state-of-the-art tools for large-scale
static graph processing; (ii) temporal reasoning can boost
performance by avoiding computations that cannot lead to
pattern detection.

We are currently working to extend the framework in var-
ious ways, and in particular: (i) Introduce additional pro-
cessing abstractions (e.g., subgraph query and retrieval, as
implemented in graph databases) to integrate them in the
pattern specification language and promote the applicability
of the system to a broader range of domains. (ii) Implement
pattern rewriting techniques to further optimize pattern eval-
uation: given the high cost of some graph processing com-
putations, rewriting patterns to limit their probability of ex-
ecution or the scope of their analysis has large time-saving
potentials. (iii) Implement deployment strategies that take
into account the structure of the graph to minimize inter-
node communication, and migration strategies that consider
the evolution of the graph over time.

Conclusions While many application domains can ben-
efit from reasoning on the temporal evolution of graphs,
the topic has only been partially addressed in reasearch.
Integrating temporal reasoning capabilities and large-scale
graph computations presents significant challenges that call
for a new class of systems. In this talk, we present ongoing
research in this area, discuss the results we achieved and the
open challenges for future investigations.
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