
Accountable Decentralized Event Reasoning Using Blockchains

Jean-Pierre Münch1 , Florian Weinacker1 , Guido Salvaneschi1 , Alessandro Margara2

1Technische Universität Darmstadt
2Politecnico di Milano

jean-pierre.muench@stud.tu-darmstadt.de, florian.weinacker@stud.tu-darmstadt.de,
salvaneschi@cs.tu-darmstadt.de, alessandro.margara@polimi.it

Abstract

Events are a powerful abstraction that allows developers to
model several computing activities, including user interac-
tions, system monitoring, business processes, and coordina-
tion among services. In this context, event reasoning can be
implemented to combine, filter and correlate events and de-
tect higher-level events of interest. In many scenarios, how-
ever, events are generated and exchanged across the bound-
aries of business organizations that may not necessarily trust
each other.
We discuss our ongoing work to ensure that the actors that
take part to the event exchange are accountable for the events
they generate. We integrate event reasoning with blockchain
technology to ensure that event generation is recorded by the
blockchain consensus protocol and we investigate optimiza-
tion strategies to improve efficiency.

1 Background and Motivations
Events have increasingly become a core abstraction to model
activities of interest in many diverse domains. Software
systems that support complex processes are often imple-
mented as event-based systems, where loosely-coupled soft-
ware components interact by producing and consuming
events (Muhl, Fiege, and Pietzuch 2010). In fact, event-
based interaction has been advocated as a suitable communi-
cation pattern in modern microservices architectures (Stop-
ford 2018). In this context, individual components imple-
ment their functionality by reasoning (Giatrakos et al. 2019)
on the events they observe from the environment in which
they are deployed, and output new events in response. For
instance, a shipping service could observe events related to
orders and locations of couriers to derive and output events
related to the status of shippings.

It is common for event-based systems to cross the bound-
aries of individual business units or even organizations. In
this setting, the actors involved in the communication might
not fully trust each other and the events they produce. For in-
stance, a shipping service could erroneously or maliciously
ignore an order. Due to the loose coupling promoted by
event-based systems, it is hard to trace the sequence of
events leading to an unexpected behavior and identify the
responsible component or components.

Blockchain technologies like Bitcoin (Nakamoto 2008)
and Ethereum (Buterin 2014) allow parties that do not trust

each other to reach an agreement on the operations they per-
form without the need to involve a central trusted entity.
However, one of the major limitations to their adoption is
their large overhead and poor scalability.

In this talk, we introduce our ongoing research on using
blockchains to make untrusted components of event-driven
systems traceable and accountable for their derivations and
for the events they produce. To mitigate performance limi-
tations, we propose a solution where the event space is par-
titioned across multiple blockchains. Moreover, developers
can decide to consume events that have not been validated
through the blockchain to reduce latency at the expense of
security. As a long-term vision, we plan to make account-
ability and trust first-class citizens of event-based architec-
tures, and incorporate them in the formalisms and technolo-
gies for reasoning on events.

2 Accountable Event-Based Communication
In this section, we overview the solution we are designing
for an accountable event-based middleware. We introduce
the system model and the interface it exposes and then we
discuss the optimizations we are developing to improve per-
formance and scalability.

2.1 Accountable Event Reasoning
As in traditional event-based architectures, the actors in the
system can have two roles: (1) they can publish events and
(2) they can subscribe to events and be notified when an
event having a certain type and content occurs. Roles can
be mixed to enable reasoning about events: actors can an-
alyze various types of events and correlate them to infer
higher-level knowledge, encode it in the form of other (de-
rived or composite) events, and propagate them to interested
parties (Giatrakos et al. 2019).

In our model, publications of events are recorded into a
blockchain, thus making data sources accountable for the
events they publish. Recording events in the blockchain oc-
curs via a smart contract, which has a write() method to
declare that an event occurred. The publications of compos-
ite events are also recorded in the blockchain, thus making
the publisher accountable for the derivation process. In line
with recent work that builds on blockchains (El-Hindi et al.
2019), we enable thin clients to access the services of the



event-based infrastructure by connecting to a node of the in-
frastructure that they trust.

2.2 Performance Optimizations
Distributed ledgers employ consensus algorithms that im-
pose a significant performance overhead on the system. For
this reason, we are experimenting a number of optimiza-
tions.

First, we allow consumers to specify trust policies when
subscribing to events. For instance, a consumer can trust all
sources and receive events even before they are stored on the
blockchain, which provides low delay but no accountability.
Conversely, it can consume events only after they have been
recorded on the blockchain, which ensures the source is ac-
countable for the publication at the cost of a higher delay.

Finer-grained configurations are possible: for instance, a
consumer might trust the reasoning performed by a certain
actor, but only if the reasoning derives from traceable events
that have been recorded on a blockchain. Also, a consumer
might select different policies for different classes of event
types, based on their role in the specific domain.

Second, users can specify a partitioning scheme for
events, and events belonging to different partitions can be
stored on different blockchains. Different partitions can
have different replication factors, thus enabling to trade se-
curity for performance. In fact, partitioning is a widely stud-
ied technique to improve the scalability of blochain tecnol-
ogy (Zamani, Movahedi, and Raykova 2018).

3 Related Work
This section discusses related work that investigated the use
of blockchain technologies in combination with data man-
agement and processing systems.

BlockchainDB (El-Hindi et al. 2019) builds a database
layer on top of blockchains, where actors are accountable
for the operations they perform. Despite targeting a differ-
ent type of systems (shared database providing operations to
read and update its state), BlockchainDB inspired some of
the optimizations we are considering in our work, includ-
ing partitioning and the possibility to consume data with
multiple levels of trust. Related to these optimizations, sev-
eral sharding protocols have been proposed to improve the
scalability of blockchain (Zamani, Movahedi, and Raykova
2018), which could be beneficial in the context of event rea-
soning we target.

Richard Hull emphasized the similarity between the con-
tent of blockchains —lists of changes recorded into an
append-only log— and events (Hull 2017). Indeed, the
use of blockchains has been investigated in application do-
mains that traditionally exploit event-based communication
patterns, such as business process management (Carmi-
nati, Rondanini, and Ferrari 2018), supply chain monitor-
ing (Sund et al. 2020), IoT data storage and access (Shafagh
et al. 2017).

4 Conclusions
Event-based systems often cross the boundaries of single or-
ganizations, thus introducing a problem of trust. We present

our ongoing work on adopting blockchain technology to en-
sure that the actors that are part of the system are account-
able for the events they derive and publish. We discuss opti-
mization techniques to mitigate performance and scalability
problems, and we propose a flexible interface where con-
sumers can trade security for reduced latency in the delivery
of event notifications.

References
Buterin, V. 2014. A next-generation smart contract and de-
centralized application platform.
Carminati, B.; Rondanini, C.; and Ferrari, E. 2018. Confi-
dential business process execution on blockchain. In 2018
IEEE International Conference on Web Services (ICWS),
ICWS ’18, 58–65. IEEE.
El-Hindi, M.; Heyden, M.; Binnig, C.; Ramamurthy, R.;
Arasu, A.; and Kossmann, D. 2019. Blockchaindb - to-
wards a shared database on blockchains. In Procs. of the Int.
Conf. on Management of Data, SIGMOD ’19, 1905–1908.
New York, NY, USA: ACM.
Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.;
and Garofalakis, M. 2019. Complex event recognition in the
big data era: a survey. The VLDB Journal.
Hull, R. 2017. Blockchain: Distributed event-based pro-
cessing in a data-centric world. In Procs. of the Int. Conf. on
Distributed and Event-Based Systems, DEBS ’17, 2–4. New
York, NY, USA: ACM.
Muhl, G.; Fiege, L.; and Pietzuch, P. 2010. Distributed
Event-Based Systems. Springer, 1st edition.
Nakamoto, S. 2008. Bitcoin: a peer-to-peer electronic cash
system.
Shafagh, H.; Burkhalter, L.; Hithnawi, A.; and Duquennoy,
S. 2017. Towards blockchain-based auditable storage and
sharing of iot data. In Procs. of the Cloud Computing Se-
curity Workshop, CCSW ’17, 45–50. New York, NY, USA:
ACM.
Stopford, B. 2018. Designing Event-Drive Systems: Con-
cepts and Patterns for Streaming Services with Apache
Kafka. O’Reilly Media, 1st edition.
Sund, T.; Loof, C.; Nadjm-Tehrani, S.; and Asplund, M.
2020. Blockchain-based event processing in supply chains
- a case study at ikea. Robotics and Computer-Integrated
Manufacturing 65:1–16.
Zamani, M.; Movahedi, M.; and Raykova, M. 2018. Rapid-
chain: Scaling blockchain via full sharding. In Procs. of the
Conf. on Computer and Communications Security, CCS ’18,
931–948. New York, NY, USA: ACM.


	Background and Motivations
	Accountable Event-Based Communication
	Accountable Event Reasoning
	Performance Optimizations

	Related Work
	Conclusions

