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ABSTRACT
Microservices architectures are getting momentum. Even small
and medium-size companies are migrating towards cloud-based
distributed solutions supported by lightweight virtualization tech-
niques, containers, and orchestration systems. In this context, un-
derstanding the system behavior at runtime is critical to promptly
react to errors. Unfortunately, traditional monitoring techniques are
not adequate for such complex and dynamic environments. There-
fore, a new challenge, namely observability, emerged from precise
industrial needs: expose and make sense of the system behavior at
runtime. In this paper, we investigate observability as a research
problem. We discuss the benefits of events as a unified abstraction
for metrics, logs, and trace data, and the advantages of employ-
ing event stream processing techniques and tools in this context.
We show that an event-based approach enables understanding the
system behavior in near real-time more effectively than state-of-
the-art solutions in the field. We implement our model in the Kaiju
system and we validate it against a realistic deployment supported
by a software company.
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• Information systems → Data streaming; Data analytics; •
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systems organization→ Distributed architectures.
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Figure 1: Metrics, logs, and traces are complementary de-
scriptions of the behavior of a software system.

1 INTRODUCTION
With the advent of microservices architectures, the software stacks
of modern companies are rapidly increasing in size and complexity,
supported by lightweight containerization techniques and orches-
tration systems such as Kubernetes that make the deployment
of distributed systems accessible to even small companies. The
complexity of microservices-based architectures calls for modern
infrastructure management solutions. Orchestration systems like
Kubernetes leverage declarative APIs to simplify the interaction
with the infrastructure. However, they limit the developers view
on what is happening and what they can control. In this scenario,
traditional monitoring techniques, which are often based on a set
of predefined trigger rules or dashboards, are insufficient. Thus,
developers struggle to deal with a number of problematic scenarios
that can emerge at runtime.

The term observability was introduced to refer to the problem
of interpreting the behavior of the overall system [24]. This prob-
lem is widespread and not only a prerogative of big companies.
Although the term lacks a formalization that supports a systematic
investigation, it is based on a precise problem statement: provide a
comprehensive picture of the system behavior integrating its outputs.
Existing observability tools identify three sources of information
to collect and process: (i) metrics, which are values describing the
status of processes and resources of a system, such as per-process
memory consumption; (ii) logs, which are reports of software exe-
cution, and (iii) traces, which are composed of causally-related data
representing flow of requests in the system. Existing tools struggle
to obtain a comprehensive view of the system, since they process
metrics, logs, or traces separately. Moreover, they prefer post-hoc
to real-time data analysis.

In this paper, we argue that it is of paramount importance to
promptly react to failures and continuously adapt the system to
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mutating environmental conditions. Thus, too little work was done
to meet the velocity requirements related to observability. To enable
fast reactions to problems, we propose an event-driven conjunct
analysis of metrics, logs, and trace data. We show that event-driven
observability is an effective approach to understand the behavior
of a distributed systems in near real-time. Intuitively, metrics, logs,
and traces are events, i.e., notifications of known facts [14], that
provide a complementary description of the system behavior (see
Figure 1). In summary, we provide the following contributions to
the research on observability:
• We coherently survey the state-of-the-art on monitoring, log
analysis, and tracing (Section 2).

• We formulate challenges and requirements for the observabil-
ity problem, with special emphasis on container orchestration
systems (Section 3).

• We propose an event-based data and processing model to in-
tegrate metrics, logs, and traces, to unify their representation,
and to enable near real-time analysis through declarative event
stream processing abstractions (Section 4).

• We present Kaiju, an event stream processing engine that we
designed in collaboration with SighUp. Kaiju enables near real-
time event-based observability in a production-grade container
orchestration system (Section 5).

• We put Kaiju into practice (Section 6) and evaluate its overhead
on the infrastructure (Section 7).

2 PRELIMINARIES
This section presents the established approaches for (i) moni-
toring [17], (ii) log inspection [11, 18], and (iii) distributed trac-
ing [9, 20]. In particular, we focus on approaches related to Kuber-
netes, which is the de-facto standard orchestrator system for con-
tainerized applications maintained by the Cloud-Native Computing
Foundation (CNCF)1. Kubernetes provides a declarative approach
based on APIs and manifests. The developer declares the desired
deployment state using YAML files, and the orchestration system
applies all the necessary changes to reach (and then maintain) the
required state starting from the current one.

Kubernetes manages clusters of machines called nodes. Each
cluster has at least one master node and many worker nodes (cf
Figure 2). The master node guarantees the status of the deployment
in case of failures, updates, and other unforeseeable events. As de-
picted in Figure 2, the master node runs the core components for the
cluster management including the kube-apiserver, which exposes
the Kubernetes API for accessing the cluster; etcd, which is a key-
value store containing all cluster data; the kube-scheduler, which
manages scheduling decisions, and the kube-controller-manager,
which manages controller processes that implement cluster man-
agement functionalities. Worker nodes are responsible for running
applications, which should be containerized, for instance using
Docker2. As Figure 2 shows, applications within worker nodes are
grouped into pods. Worker nodes communicate with the master
node through a kubelet, an agent that registers the node to the
master’s API server. Additionally, they host a kube-proxy to handle
networking.

1https://www.cncf.io
2https://www.docker.com/resources/what-container

Kubernetes optimizes the usage of available resources, provides
discovery and load balancing among services, and reacts to events
like failures or workload modifications. To these extents, Kuber-
netes consumes applications logs and metrics about the running
applications as well as end-to-end request traces, that span the
whole infrastructure. Figure 2 shows how this information is ex-
posed by either the master or the worker nodes.

The different nature of the metrics, logs, and traces led to the
development of different tools that optimize for a particular data
type. When surveying existing solutions, the following aspects are
relevant [12]:
• the data models and formats used to represent and encode met-
rics, logs, and traces, i.e., numeric for metrics, semi-structured
text-based for logs, and structured JSON-based for traces;

• the data collection mechanisms, which is periodic for metrics,
continuous for logs, and reactive for traces;

• the management solution, which includes storage, filtering,
cleaning, indexing and in general any pre-processing and prepa-
ration step that precedes the concrete analysis of the collected
data,

• the data analysis, which includes data exploration, alerting,
querying, or visualization.
In the following, we survey of the state-of-the-art on metrics,

logs, and trace data, highlighting the aspects mentioned above.

2.1 Metrics
Metrics are numeric values about the performance of a software
infrastructure or application. They are collected using lightweight
agent-based mechanisms deployed aside system components or
processes in each node [17]. Agents collect data in two ways: (1) di-
rectly from running processes, which expose them using ad-hoc
libraries, or (2) from the system that is running the process. In the
former case, metrics can be customized by the application devel-
oper, while in the latter case they mainly relate to resources usage
(typically CPU and memory) and networking.

Agents make data accessible to external components responsible
for storage and/or processing either in (i) pull-based mode, where
the receiver asks the agent to forward data, or in a (ii) push-based
mode, where the agent sends data to the receiver as soon as available.
While a push-based approach can guarantee lower latency than a
pull-based one, it requires the receiver to cope with incoming data.

In an orchestrated system, metrics are sampled at regular in-
tervals, and typically classified as custom metrics, related to the
hosted application, and core metrics, related to the orchestrator.
Relevant core metrics include, but are not limited to: (i) Node met-
rics: metrics related to the hardware resources of the single node
(usually exposed by means of tools like node-exporter) and metrics
related to the kubelet. (ii) Container metrics: metrics of orchestrated
containers. Each node runs a container runtime and, for each node,
the kubelet exposes metrics of containers deployed through the
cAdvisor integrated component. (iii) Master-node metrics: metrics
related to Kubernetes master components (API Server, Controller
Manager, Scheduler, ETCD). (iv) Network metrics: metrics from the
DNS solution transparently used from Kubernetes (CoreDNS), from
the kube-proxy components deployed in each node, from the cluster
network plugin (offering networking between nodes), and from
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Figure 2: Kubernetes architecture: main components and produced observations.

the ingress controller (if deployed). (v) Deployment metrics: data on
the state of objects in the cluster (desired and actual state) exposed
through the Kubernetes API and made available as metrics from
the kube-state-metrics addon.

1 a p i _ h t t p _ r e q u e s t s _ t o t a l {
2 method ="POST " ,
3 hand l e r = " / messages " }
4 1 542650713
5 34
6
7 a p i _ h t t p _ r e q u e s t s _ t o t a l {
8 method ="POST " ,
9 hand l e r = " / messages " }
10 1542651425
11 45

Listing 1: Two samples of the same metric in Prometheus
format.

In Kubernetes, components, such as containers, pods, and
deployments, expose by default metrics via HTTP endpoints,
which provide a pull-based access mode. Monitoring systems
like Prometheus3 pull metrics endpoints at regular intervals, and
store metrics in time-series databases. Kubernetes adopted the
Prometheus format (cf Listing 1) as standard for its internal compo-
nents, while hosted applications need to be manually instrumented
to do the same. The Prometheus format for metrics is composed
of two main parts: (i) the id part identifies the metric through a
name and a set of key-value pairs (labels) to provide additional
metadata, and (ii) the sample part specifies the timestamped value
of the metric.

3https://prometheus.io/

Metrics data is managed using time-series databases (TSDBs)
such as InfluxDB4. TSDBs optimize the storage and data access
to make data analysis more efficient. The main issue of TSDBs is
related to the indexing of data. Metrics are useful at high granularity
when they are processed online, for instance to observe spikes in
CPU trends. Since in large systems the volume of metrics data is
huge, TSDBs must handle high cardinality indexing to support
a large number of time series5. However, since the relevance of
metrics decreases over time, they can be aggregated and stored at
lower-granularity for historical analysis. For example, systems like
Kapacitor6 and Gemini2 [2] can perform down-sampling before
storing metrics.

The analysis of metric is usually referred to in the literature
as monitoring. Online monitoring is relevant for use-cases like
anomaly detection [21], and it usually employs tools for rule-based
alerting. Alerting rules can be static or dynamic, that is, changing
over time based on historical data, on the current values, and on
some system parameters. Prometheus allows expressing rules us-
ing the PromQL language and their triggering is managed by the
AlertManager component. Data visualization plays a critical role in
the analysis of metrics. Dashboards are the tools to manage alerting
rules, query historical data, and observe the system in a meaningful
way. State-of-the-art tools widely adopted in the industry include
Grafana7, Kibana for ElasticSearch8, and Chronograf for the Tick
stack9.

4https://www.influxdata.com/time-series-platform/
5https://www.influxdata.com/blog/path-1-billion-time-series-influxdb-high-
cardinality-indexing-ready-testing/
6https://www.influxdata.com/time-series-platform/kapacitor/
7https://grafana.com
8https://www.elastic.co/products/kibana
9https://www.influxdata.com/time-series-platform/chronograf/
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2.2 Logs
Logs are textual records of an operation performed by a software
system or an encountered error. They can be structured or unstruc-
tured depending on the format of choice. For instance, Listing 2
shows an example of structured log in JSON format.

1 {
2 "msg " : " Incoming r e qu e s t " ,
3 " da t a " : { " c l i e n t I d " : 5 4 732 } ,
4 " t imestamp " : 1 5 41866678 ,
5 " l e v e l " : "DEBUG" }

Listing 2: Example of structured log in JSON.

In an orchestration system, log are generated at different levels.
For instance, Kubernetes provides logs at pod-, node- and cluster-
level. Additionally, there are (i) Logs of containers: collected from
the container runtime if written on standard output. (ii) Logs of
Kubernetes components: stored on the different nodes. (iii) Audit
logs: related to requests made to the API Server. (iv) Kubernetes
events: logs related to events in the cluster (get events API).

Like metrics, logs are collected directly from running processes
that generate them using ad-hoc libraries and expose them on given
endpoints. Differently from metrics, logs are not collected periodi-
cally but continuously reported at unpredictable rates. Fluentd is
the CNCF proposal for log collection. It is a lightweight agent to
deploy in each node to build a unified logging layer. Fluentd is
configurable through a set of plugins: input plugins specify sources
and parsing formats, filter plugins manipulate logs, output plugins
specify sinks and output formats. Logs are usually stored before be-
ing accessed, and often require pre-processing and filtering. Indeed,
log formats may be heterogeneous across the various processes
that compose a software system, and this requires parsing strate-
gies, based for example on regex matching, to pre-process them.
Moreover, to reduce the amount of data stored, it is often useful to
define rules to filter out some logs of a specific service, or with a
specific code or level. Efficient solutions to save and retrieve logs,
such ElasticSearch10 exist, but they often introduce a high ingestion
delay that limits their capability to sustain high input rates and
provide near real-time analysis. To mitigate this problem, message
brokers such as Apache Kafka [11] are often used to buffer logs
before storing them.

Differently from metrics, a common analysis pipeline for logs is
not identifiable. Also a CNCF proposal for log analysis is missing. In
a usual deployment, logs are forwarded to data storage and retrieval
platforms like ElasticSearch and queried later on using tools like
Kibana to provide graphical visualization of the logs gathered, such
as the number of log errors. Alspaugh et al. highlight that human
inference is crucial to drive log analysis [1] and, thus, it is important
to facilitate manual inspection of logs gathered. Recently, tools
like Humio11 have been designed to approach logs as a stream-
processing problem providing platforms to ingest and inspect data
rapidly and efficiently.

1 {
2 " t r a c e ID " : " f 6 c 3 c 9 f edb 846d5 " , " spanID " : " 5 c f a c 2 ce 41 e f a 896 " , "

f l a g s " : 1 ,
3 " operat ionName " : "HTTP GET / cus tomer " ,
4 " r e f e r e n c e s " : [ { " r e fType " : " CHILD_OF " , " t r a c e ID " : " f 6 c 3 c 9 f edb 8

46d5 " , " spanID " : " 1 4 a 3630039 c 7b19 a " } ] ,
5 " s t a r t T ime " : 1 5 42877899033598 , " d u r a t i o n " : 7 4 7491 ,
6 " t a g s " : [ { " key " : " span . k ind " ,
7 " type " : " s t r i n g " ,
8 " v a l u e " : " s e r v e r " } ,
9 { " key " : " h t t p . method " ,
10 " type " : " s t r i n g " ,
11 " va l u e " : "GET" } , . . . ] ,
12 " l o g s " : [ { " t imestamp " : 1 5 42877899033827 ,
13 " f i e l d s " : [ { " key " : " even t " ,
14 " type " : " s t r i n g " ,
15 " va l u e " : "HTTP r e qu e s t r e c e i v e d " } , . . . ] } ,
16 { " t imestamp " : 1 5 42877899033872 ,
17 " f i e l d s " : [ { " key " : " even t " ,
18 " type " : " s t r i n g " ,
19 " va l u e " : " Loading cus tomer " } , . . . ] } ] }

Listing 3: Example of a span collected with the OpenTracing
API and serialized by Jaeger tracer.

2.3 Traces
Traces are data about requests received by applications. They are
produced by specifically instrumented applications that track the
request flow. In a Kubernetes infrastructure, the orchestrator does
not produce trace data. However, traces are essential to untangle
the intricate network of interactions typical of microservices appli-
cations. To enable tracing and reconstructing the flow of requests,
metadata are usually stored within processes and transmitted in
inter-component communications. Recently, distributed tracing
tools have been developed for services and microservices architec-
tures with the purpose of retrieving end-to-end data and analyzing
the workflow and performance of requests through system compo-
nents [9, 20]. Open-source tools for trace analysis, such as Jaeger12
and Zipkin13, are based on similar pipelines composed by instru-
mentation libraries in different languages, agents and collectors to
gather data, a storage solution, and a visualisation layer.

Two main data models are used to represent data in end-to-end
tracing systems: the span model, introduced by Google Dapper [20],
and the more general event model, introduced by X-Trace [7]. By
analyzing the two alternatives in details, one can observe that
the span model is less expressive than the event model: indeed,
each span may be defined as a composition of events, but spans
cannot represent every possible composition of events [13]. The
CNCF supports the OpenTracing specification14, a vendor-agnostic
effort towards a standardization of instrumentation libraries. The
OpenTracing specification defines traces as composed of spans that
identify units of computation within the request workflow. A span
is composed of metadata to reconstruct the trace (spanId, traceId
and references to other spans), two timestamps representing its
start time and end time, an operation name, a set of tags (key-value
pairs) and a set of logs (key-value pairs with a timestamp) related
to it. OpenTracing offers an API for multiple languages, but the
serialization format for the data gathered depends on the specific
tracer chosen. For this reason the serialization format of the spans
10https://www.elastic.co
11https://www.humio.com/
12https:jaegertracing.io
13https://zipkin.io
14https://github.com/opentracing/specification
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may be slightly different from the OpenTracing specification. Jaeger
is the CNCF proposal for trace collection and analysis, compliant
with the OpenTracing specification. A Jaeger pipeline consists of:
(i) the tracer client library, implemented in the application language,
exploiting UDP communication in the same pod to send traces to the
jaeger-agent deployed as a sidecar component; (ii) the jaeger-agent
responsible for flushing data to the jaeger-collector that writes data
to a specific storage solution, such as Cassandra or ElasticSearch;
(iii) the jaeger-query component interacting with the database to
offer an API to retrieve traces and a Gantt visualization of specific
traces.

Tracing tools like Jaeger enable a post-hoc analysis of trace data
and currently do not implement a solution for online analysis. How-
ever, as pointed out in the literature on distributed tracing, online
analysis plays an important role [15, 19] and can be effectively
paired with the post-hoc one to supervise the system behavior in
large-scale systems [9].

3 OBSERVABILITY AS A RESEARCH
PROBLEM

The observability problem derives from the industrial need of su-
pervising distributed software systems when the number of com-
ponents becomes large [16, 22, 24]. To approach observability as
a research problem, in the following we identify the challenges,
we formulate the research questions, and we present a require-
ments analysis for the design of methodologies and tools to address
this problem. Our inquiry starts from the definition provided by
Majors [16], which was also inspired by Kalman15:

“Observability for software is the property of knowing what
is happening inside a distributed application at runtime by
simply asking questions from the outside and without the need
to modify its code to gain insights.”

Majors refers to the observability problem as the need for gaining
visibility of the software behavior from an outside perspective.
Thus, we formulate two research problems (OP):

OP1 How can we expose the system behavior?
OP2 How can we make sense of the system behavior?

In the following, we discuss these two problems and we present a
requirement analysis to drive the research on the topic.

3.1 Exposing the System Behavior
The problem of exposing the system behavior (OP1) entails defin-
ing which data a system must expose. In this context, the trade-off
between collecting too much data and not exposing enough infor-
mation is still little investigated. Therefore, although determining
what should be exposed may be dependent on the specific piece of
software, we believe that the study of OP1 should drive the defini-
tion of a set of guidelines to investigate the trade-off. To this extent,
we need to understand what data constitute the observable behavior
of the system, that is, the data that can be retrieved as output of
the system to infer the system behavior. We can classify the system

15In the context of control theory, Kalman provides a formal definition of observability
as a measure of the knowledge about internal states of a system that can be inferred
by mean of its external outputs [10].

Figure 3: System behavior can be described on the Applica-
tion and Infrastructure axes.

output along two orthogonal dimensions related to the behavior of
the system at runtime, as shown in Figure 3.

On the application dimension we observe the results of the com-
putation, i.e., application outputs, and we measure their correctness.
On the infrastructure dimension we observe metrics, logs, and trace
data, and we can measure the system efficiency. The two dimen-
sions are orthogonal, yet complementary. Thus, we provide the
following definition of observable behavior.

Definition 3.1. The observable behavior is the behavior subsumed
by all the available output, i.e., application output, metrics, logs,
and trace data.

The adjective observable highlights that our knowledge of the
system behavior is limited to what we can infer from the output.
Since we make no assumptions on the knowledge of the applica-
tion logic, in general, we cannot measure the correctness of the
application output. For this reason, OP1 is mainly related to the
infrastructure dimension, i.e., metrics, logs, and trace data, which
are agnostic from the application domain.

Different tools exist to deal with metrics, logs, and trace data
(see Section 2). However, each tool is often specialized to gather,
process, and analyze only one of these types of data. In practice, we
lack a unifying conceptual framework and set of tools to obtain an
overall perspective on the status of the system. Thus, by treating
metrics, logs, and trace data separately we miss an opportunity. We
claim that what is missing is a unifying abstraction that fosters
interoperability across processing pipelines for metrics, logs, and
trace data. To this extent, we elicit from OP1 the following require-
ments for a unifying data model for metrics, logs, and trace data.
Henceforth we collectively refer to them as observations.
R1 A data model must be time-dependent. Observations describe
the behavior of the system over time and so their content is strictly
bound to specific instants in time: the instant when a metric is
collected, the instant when a log is reported, the instant when a span
composing a trace has been executed. Accordingly, a suitable data
and processing model should include time and temporal relations
as first-class concepts.
R2 A data model must be flexible. To empower structural interop-
erability of observations, the schema should be applicable to the
different types of data: metrics content is a numeric value, logs con-
tent is a report with different formats under different specifications,
trace content can be defined in multiple ways. Moreover, it should
be flexible enough to capture the complexity of each domain.
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R3 A data model must be extensible. To empower semantic interop-
erability of observations gathered from different components, the
vocabulary used for describing the environment should be shared.
In this way, we can guarantee a common meaning across compo-
nents, for example operation naming, resource naming, metrics
naming.

3.2 Making Sense of the System Behavior
The problem of making sense of the system (observable) behavior
(OP2) requires to determine what kind of analysis provides the
actionable insights. In general, answering OP2 is about identifying
methods to derive insights by interpreting the observable behavior
of a system. More formally, we define an interpretation as follows.

Definition 3.2. An interpretation is a function of the observable
behavior of the system over time.

Since distributed systems fail in complex ways [4], no effective
test can be done to ensure coverage of all the possible situations and
facets system might exhibit. Existing use-cases describe both post-
hoc and on-the-fly analyses. An example of the former consists in
applying machine learning algorithms on historical data to derive
thresholds and models for the system behavior. An example of
the latter consists in detecting increasing latency and/or checking
Service Level Agreement (SLA) requirements at runtime. As the
complexity of the systems we build increases, analyzing software
in production environments [16] becomes the only option. Because
of this, on-the-fly analysis is gaining popularity, as it provides a
prompt reaction to erroneous behaviors. Thus, without neglecting
the value of persist data, we claim that making sense of system
behavior in near real-time is the preferred solution.

To this extent, we elicit from OP2 the following requirements
for an analysis framework.

R4 The analysis must consider temporal relations. As stated in R1,
observations depend on time. Therefore, wemust consider temporal
aspects when we interpret observations.
R5 The analysis must be reactive. The importance of near real-time
supervision of systems mainly targets the need to observe and
process the current status of the system [2, 21]. We should be
reactive and minimize the delay for observation and interpretation.
R6 The analysis must handle different levels of complexity. The anal-
ysis framework must handle the variety of data represented using
observations. Additionally, it must enable both fine-grained data
access and aggregations to effectively transform, filter, correlate,
and identify relevant patterns of observations.

4 EVENT-BASED OBSERVABILITY
In this section, we propose a novel solution for the observability
problem formulated in Section 3. We name our proposal event-based
observability, since we advocate for the concept of event as the
missing data abstraction towards a unified observability pipeline.
Additionally, since observations are intrinsically ephemeral data
that must be processed on-the-fly [22], we advocate for an event
stream processing model as a valuable option to analyse observa-
tions on-the-fly before they lose value.

4.1 Data Model
We present the data model for event-based observability, and we
show how it fulfills the requirements in Section 3. We propose
the concept of event defined as follows as a unifying concept for
metrics, logs, and trace data.

Definition 4.1. An event is characterized by

Timestamp | Payload | Context

where:
• Timestamp is a numeric value representing the event time or the
validity interval, e.g., sampling-time for metrics, creation times-
tamp for logs, event time (events) or completion time (spans) for
traces.

• Payload is a generic set of key-value pairs that encode the actual
information carried by the event (for example, a numeric value
observed in some software component).

• Context is a generic set of key-value pairs providing additional
metadata contextualizing the event (for example, dimensions
and scopes of the event like service name, availability zone,
instance type, software version, etc.).

Our proposal fulfills the requirement analysis elicited on OP1.
Indeed, events are time-annotated (R1). They adopt a key-value
structure which is flexible enough to represent metrics, logs, and
trace data (R2). Finally, they are extensible through the addition
of contextual information (R3). Listings 4, 5, and 6 show how the
examples from Section 2 look like in the proposed data model.

1 {
2 " t imestamp " : 1 5 42650713000 ,
3 " pay load " : {
4 " name " : " a p i _ h t t p _ r e q u e s t s _ t o t a l " ,
5 " v a l u e " : " 3 4 " } ,
6 " c on t e x t " : {
7 " method " : " POST " ,
8 " hand l e r " : " messages " } }

Listing 4: Example of metrics as observability events.

1 { " t imestamp " : 1 5 41866678000000 ,
2 " pay load " : {
3 "msg " : " Incoming r e qu e s t " ,
4 " l e v e l " : "DEBUG"
5 } ,
6 " c on t e x t " : {
7 " c l i e n t I d " : 5 4 732
8 } }

Listing 5: Example of a log as an observability event.

4.2 Processing Model
We propose event stream processing (ESP) as a suitable processing
model to enable on-the-fly interpretation of the observable behav-
ior of a software systems by filtering, aggregating, joining, and
correlating information from multiple sources [5].

Equation 1 shows the most general definition of interpretation
starting from observations

f (M(t), L(t), T(t)) = f (t ,M, L,T) (1)
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1 { " t imestamp " : 1 5 42877899033598 ,
2 " pay load " : {
3 " du r a t i o n " : 7 4 7491 ,
4 " r e f e r e n c e s " : [ {
5 " r e fType " : " CHILD_OF " ,
6 " t r a c e I d " : " f 6 c 3 c 9 f edb 846d5 " ,
7 " span Id " : " 1 4 a 3630039 c 7b19 a " } ] ,
8 " operat ionName " : "HTTP GET / cus tomer " } ,
9 " c on t e x t " : {
10 " t r a c e I d " : " f 6 c 3 c 9 f edb 846d5 " ,
11 " span Id " : " 5 c f a c 2 ce 41 e f a 896 " ,
12 " operat ionName " : "DEBUG" ,
13 " f l a g s " : 1 ,
14 " span . k ind " : " s e r v e r " ,
15 " h t t p . method " : "GET" ,
16 " h t t p . u r l " : " / cus tomer ? cus tomer=392 " ,
17 " component " : " ne t / h t t p " ,
18 " h t t p . s t a t u s _ c o d e " : 2 0 0 } }

Listing 6: Example of a span as an observability event.

where t indicates time, M indicates metrics, L indicates logs, and T
indicates traces data.

In general, we refer to ESP as a processing abstraction to con-
tinuously provide updated results to a set of standing queries (or
processing rules) [5]. Several types of formalisms exist for queries,
which involve different processing mechanisms. Specifically, wide-
spread formalisms accommodate analytics on streaming data and
event-pattern recognition. The former transform input data to update
the results of some computation. They deal with the unbounded
nature of the stream by relying on incremental computations or
by using windowing operators to isolate a recent portion of the
stream as input for the computation. The latter look for temporal
patterns in the input stream of events [6, 8].

ESP abstractions capture the requirements in Section 3. ESP anal-
ysis depend on time (R4). Streaming analytics can access temporal
attributes and windows are typically defined over the temporal
domain. Even more significantly, temporal relations are a core
building component for event-pattern recognition. ESP analysis
is reactive (R5). Computations are reactively triggered by the in-
coming events, which update output results in the case of analytics
queries and initiate pattern detection in the case of pattern recog-
nition rules. ESP abstractions are expressive (R6). They enable data,
filtering, transformation, joining, correlation, and enrichment with
static data. They can capture complex temporal relations among
observed events. Remarkably, lots of research efforts were devoted
to define simple languages, and today ESP engines such as Esper16,
Drools Fusion17, and Siddhi [23], provide powerful abstractions for
stream analytics and event recognition into high-level declarative
languages. Additionally, ESP is well integrated into the Big Data
landscape [3, 8, 26].

5 THE KAJIU PROJECT
In this section, we describe the design of the Kaiju project to apply
event-driven observability in the concrete context of companies
embracing the CNCF stack. The investigation follows the design sci-
ence methodology [25] and was carried on in the industrial context
provided by our stakeholders, SighUp18.

16http://www.espertech.com/
17https://www.drools.org
18https://sighup.io/

Figure 4: The Kaiju architecture and its main components.

5.1 The CNCF Stack
We implemented the Kaiju project as an extension of the CNCF
stack, which includes the following systems: Prometheus for moni-
toring, Fluentd for logs, and Jaeger for end-to-end traces. We iden-
tified the following limitations in the CNCF stack:
• It requires the deployment of three different pipelines to analyze
metrics, logs, and traces.

• The pipelines require large amounts of resources, making down-
sampling almost always necessary.

• The pipelines are not reactive, and require developers to monitor
multiple dashboards.

• The integration of data gathered from different tools is almost
impossible since metrics, traces, and logs are processed in isola-
tion.

• The signals (events) that the Kubernetes orchestrator system
produces at runtime are not collected, preventing their integra-
tion with metric, logs, and traces to gain a complete view of the
behavior of the system.

• The tools of choice do not provide abstractions and mechanisms
to reason on low-level data and extract higher-level information.

5.2 Evolving the Stack with Kaiju
To enable event-driven observability, we extended the CNCF stack
to use the data and processing model defined in Section 4.

5.2.1 Requirements. To allow for a simple integration within the
CNCF stack and to simplify the migration of existing software
systems, our design targeted the following requirements, in addition
to the general requirements for observability identified in Section 3.
• Produce an easily-pluggable solution for companies already
implementing projects of the CNCF stack.

• Implement a modular solution to accommodate the processing
pipelines that deal with metrics, logs, and traces.

• Enable the definition of custom event types to allow high-level
processing of data produced by different components.

5.2.2 Architecture. The above requirements led to the design of
the Kaiju ESP architecture represented in Figure 4. The architecture
consists ofmultiplemodules that can scale independently. The kaiju-
metrics, kaiju-logs, kaiju-tracesmodules consume observations from
the sources of metrics, logs, and traces, respectively. They convert
these observations into events that adhere to the data model and
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format presented in Section 4 and perform initial pre-processing
when needed.

The kaiju-hl module collects events and analyzes them by (i) in-
tegrating data from multiple sources, and (ii) abstracting away from
specific technicalities of metrics, logs, and traces.

In line with the processing model discussed in Section 4.2, we
assume analytical tasks to be expressed using high-level ESP abstrac-
tions and carried out by an ESP engine that implements established
algorithms and techniques for event stream processing.

Although conceptually represented as a single module in Fig-
ure 4, in a concrete deployment kaiju-hl can consist of multiple
components, each of them focusing on specific analytical tasks, and
possibly implemented using different engines. Moreover, a kaiju-hl
component can produce events for other kaiju-hl components, thus
enabling a hierarchical decomposition of the analytical problems.

5.2.3 Prototype implementation. In the following, we describe a
concrete implementation of the Kaiju architecture defined above19.
Our prototype implements the kaiju-metrics, kaiju-logs, kaiju-traces,
and kaiju-hl modules using the Esper open-source ESP engine20.
Esper is implemented as a lightweight Java library and provides
a high-level and expressive Event Processing Language (EPL) to
write rules that integrate both stream analytics and event-pattern
recognition functionalities.

1 create schema A( f i e l d 1 S t r i ng , f i e l d 2 i n t )
2 create schema B ( f i e l d 1 S t r i ng , f i e l d 2 i n t )
3 create schema D( f i e l d 3 doub le )
4 create schema C( f i e l d 4 s t r ing ) inher i t s D
5
6 in se r t into Output s e l e c t ∗ from A# time ( 1 0 s e c )
7 s e l e c t ∗ from pattern [ a=A −> b=B t ime r : wi th in ( 2 min ) ]

Listing 7: Primer on EPL syntax.

Listing 7 shows an example of EPL program with few repre-
sentative queries (statements, in EPL jargon). The EPL statements
from line 1 to line 4 define the schema for the streams A, B, C, and
D. Schema definition works like in relational databases: a schema
consists of uniquely named and strongly typed fields. Schema in-
heritance is also supported, as exemplified in line 4.

Lines 6 and 7 show two valid EPL queries. Line 6 presents a
simple selection query. The stream is identified by its schema
name, as tables in relational databases. #time(10sec) indicates
a sliding window of 10 seconds. The statement shows an insert
into clause that forwards the query result to a named output
stream21. Line 7 shows an example of event-pattern recognition.
The query looks for an event of type A followed-by an event of type
B; timer:within(2 min) indicates the interval of validity of the
recognition.

Being implemented as a Java library, EPL is an object-oriented
language that supports a POJO presentation of the events. Below,
we detail the implementation for each of the module in Figure 4.

kaiju-metrics receives metrics from agents that pull Prometheus
endpoints. We adopt Telegraf agents22 from InfluxData and its

19Kaiju is available as an open-source project at https://github.com/marioscrock/Kaiju
20http://www.espertech.com/esper/
21EPL supports schema inference for the output stream
22https://www.influxdata.com/time-series-platform/telegraf/

1 public c l a s s Met r i c {
2 public S t r i n g name ;
3 public Long t imestamp ;
4 public Map< S t r i ng , F l o a t > f i e l d s ;
5 public Map< S t r i ng , S t r i n g > t a g s ; }

Listing 8: Metric event POJO.

plugin to scrape Prometheus endpoints. We model each metric as a
POJO taking into account the Telegraf output format (cf Listing 8):
the timestamp when metrics are collected, a name, a key-value map
of tags as labels and a key-value map of fields representing values
sampled. Additionally, kajiu-metrics add Kubernetes-related data
collected from the cAdvisor internal monitoring component.

1 public c l a s s Log {
2 public Map< S t r i ng , Objec t > f i e l d s ; }

Listing 9: Log event POJO.

kaiju-logs receives logs from Fluentd. We implemented a Fluentd
output plugin that extracts and forwards data to kaiju-logs. The
log format depends on the specific library adopted. For this reason,
we model each log as a POJO with a very generic key-value map
of fields (cf Listing 9). We choose to adopt the ESP engine inges-
tion time as timestamp to process them. Additionally, kajiu-logs
exploits the kubernetes-metadata filter plugin to enrich container
log records with pod metadata and namespaces.

1 s t ruc t Span {
2 i 6 4 pa r en t Span Id
3 l i s t <SpanRef > r e f e r e n c e s
4 i 6 4 s t a r t T ime
5 i 6 4 du r a t i o n
6 l i s t <Tag> t a g s
7 l i s t <Log> l o g s
8 [ . . . ] }
9
10 s t ruc t P ro c e s s { # P r o c e s s em i t t i n g spans
11 r e q u i r e d s t r i n g serv iceName
12 o p t i o n a l l i s t <Tag> t a g s }
13
14 s t ruc t Batch { # C o l l e c t i o n o f spans r e po r t e d by

p r o c e s s e s .
15 r e q u i r e d P ro c e s s p r o c e s s
16 r e q u i r e d l i s t <Span> spans }

Listing 10: Span event POJO: struct specification.

kaiju-traces receives spans from a jaeger-agent deployed as a
sidecar process. Jaeger-agents receive spans from processes in-push
based manner on a UDP connection. They forward collections of
spans called batches to collectors. We configured kaiju-traces to
received spans from the jaeger-agent as a collector. To this extent,
we model Jeager data structures as POJOs from their thrift spec-
ification in Listing 10. Listing 10 shows the main data structures:
Span, Process, and Batch. We consider as timestamp for spans the
ESP ingestion time. Additionally, kajiu-traces adds metadata about
pod, node, and namespace within the modified jeager-agent.

Figure 5 summarizes the flow of events in Kaiju. kaiju-metrics,
kaiju-logs, and kaiju-traces directly interact with adapters in the
CNCF stack, convert metrics, logs, and traces into the Metric, Log,
and Span event types presented above, and perform some initial
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adapters kaiju metrics, logs, and traces kaiju hl

Log Span

Figure 5: Flow of events in Kaiju

1 public c l a s s Event {
2 Long t imestamp ;
3 Map< S t r i ng , Objec t > pay load ;
4 Map< S t r i ng , Objec t > c on t e x t ; }

Listing 11: Event POJO.

Alias Variable
cont_res_limit_cores kube_pod_container_resource_limits_cpu_cores
cont_cpu_usage_tot container_cpu_usage_seconds_total
’e.o’ ’event.involvedObject’

Table 1: Aliases for variable names.

pre-processing using one or more queries (Q in Figure 5). They
convert the results into generic Events as defined by the POJO in
Listing 11, and forward them to kaiju-hl over a TCP connection.
kaiju-hl performs analytical tasks by integrating data from the other
components.

To enable for a better decomposition of the problem, kaiju-hl sup-
ports the specification of custom Event subtypes. It automatically
translates custom event specifications into (i) a schema statement
determining the event type, and (ii) a processing statement that
consumes input Events, checks the compliance of the payload and
context with the defined event type, and forwards the event on the
stream defined by the for that type.

6 PUTTING KAIJU IN PRACTICE AT SIGHUP
To validate the value of Kaiju in practice, we deployed it at SighUp,
a software company that adopts microservices architectures and
the CNCF stack described in Section 5.1. Our stakeholders provided
insights about the kinds of analysis they were interested in. In the
following, we present some of the EPL queries that we deployed
on Kaiju to satisfy these needs, and we discuss the main lessons we
learned.

Metrics. Classical queries on metrics are related mainly to the
USE (Utilisation, Saturation, Errors) and RED (Requests, Errors,
Duration) methods prescribing the set of values that should be
monitored in a software system [22]. Orchestration systems, and
Kubernetes in particular, introduce additional metrics that enable
queries related to the expected and actual deployment of the system.
For instance, they enable checking resources utilization of pods,
the number of replicas for a given service, if some pod is in a restart
loop, or if the developer can reschedule all pods in case of a node
failure.

The EPL language we use in Kaiju can express all the rules above.
For instance, Listings 12 and 13 show a first EPL query in kaiju-
metrics (Q1). Q1 detects those containers that are overcoming the de-
sired CPU usage limit. Listing 12 shows the first part of the rule that

constructs the ContainerCPUUtilization stream from the stream
ofmetrics. This stream is used internally by kaiju-metrics to perform
pre-processing. In particular, metrics are retrieved from Prometheus
periodically (every second in the SighUp deployment) and main-
tained as growing counters. Therefore, as shown in Listing 12, query
Q1 creates a ContainerCPUUtilization event for each subsequent
pair of Metric events with same tags and related to the usage
of cpu in a container (container_cpu_usage_seconds_total),
where the usage is the difference between the values provided
by the two readings.

1 create schema Con t a i n e rCPUU t i l i s a t i o n ( c o n t a i n e r S t r i ng ,
2 pod S t r i ng , ns S t r i ng , usage doub le ) ;
3
4 in se r t into Con t a i n e rCPUU t i l i s a t i o n
5 s e l e c t m1 . t a g s ( ' conta iner_name ' ) as con t a i n e r ,

m1 . t a g s ( ' pod_name ' ) as pod , m1 . t a g s ( ' namespace ' ) as
ns , avg ( ( m2 . f i e l d s ( ' c oun t e r ' ) −

m1 . f i e l d s ( ' c oun t e r ' ) ) / ( ( m2 . t imestamp −

m1 . t imestamp ) / 1 0 0 0 ) ) as usage
6 from pattern [ every

m1=Met r i c ( name= ' c on t _ cpu_u sage__ t o t ' ) −>
m2=Met r i c (m2 . name=m1 . name and
m2 . t a g s=m1 . t a g s ) ] # time ( 1 min )

7 group by m1 . t a g s ( ' conta iner_name ' ) , m1 . t a g s ( ' pod_name ' ) ,
m1 . t a g s ( ' namespace ' ) output l a s t every 1min

Listing 12: (Q1a) ContainerCPUUtilisation.

The EPL statement in Listing 13 constructs the timestamp, pay-
load, and context of the event representing the high CPU usage.
Notably, this analysis integrates data from the container runtime in
nodes and data from the Kubernetes API (modeled as metrics from
the kube-state-metrics plugin). Figure 6 shows the event flow.

Logs. Log analysis is application-dependent, however, classical
types of analysis are related to the number of logs in each logging
level and to the detection of error messages. Kubernetes introduces
two useful log files: the audit log of requests made to the Kubernetes
API, and the log of Kubernetes events23. The audit log enables
detecting unauthorized attempts to access the cluster, while the
latter reports all actions done by Kubernetes on containers, pods,
images and Kubelets.

Listing 14 shows an example query Q2 processing Kubernetes
logs. Q2 retrieves events that correspond to a container image pulled
from the registry (PulledImage event). Figure 7 shows the event
flow for Q2.

Traces. End-to-end traces collected through Jaeger are usually
visualized through a Gantt representation to identify bottlenecks
and inspect failed requests. However, it is common to query trace
23Kubernetes events https://github.com/kubernetes/kubernetes/blob/master/
pkg/kubelet/events/event.go

Q1a Q1bMetric

Metric

Event

Prometheus

ContainerCPU
Utilisation

CNCF 
adapters

kaiju metrics, logs, and traces kaiju hl

Figure 6: Event-flow for Q1 cf Listings 12 and 13.
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1 in se r t into Event
2 s e l e c t now ( ) as t imestamp , new { c o n t a i n e r=con t a i n e r ,

h ighUsage=usage } as payload , new
{ cpuL imi t= f i e l d s ( ' gauge ' ) , pod=pod , namespace=ns }
as c on t e x t

3 from Con t a i n e rCPUU t i l i s a t i o n # l a s t e v e n t u ,
4 Met r i c ( name= ' c o n t _ r e s _ l i m i t _ c o r e s ' ) # l a s t e v e n t m
5 where m. t a g s ( ' c o n t a i n e r ' )=u . c o n t a i n e r and

m. t a g s ( ' pod ' )=u . pod and m. t a g s ( ' namespace ' )=u . ns
and usage > f i e l d s ( ' gauge ' )

Listing 13: (Q1b) HighCPUUsage.

Q2FLog Event

Kubernets/
Fluentd

CNCF 
adapters

kaiju metrics, logs, and traces kaiju hl

Figure 7: Event-flow for Q2 cf Listing 14.

1 in se r t into Event
2 s e l e c t now ( ) as t imestamp ,
3 new { pu l l ed Image= f i e l d s ( ' e . o . name ' ) } as payload ,

new { namespace= f i e l d s ( ' e . o . namespace ' ) } as c on t e x t
4 from FLog ( f i e l d s ( ' kube rne t e s . l a b e l s . app ' )= ' e v e n t r o u t e r '

and f i e l d s ( ' even t . r ea son ' )= ' P u l l e d ' and
( f i e l d s ( ' even t . message ' ) ) . c o n t a i n s ( ' p u l l e d ' ) )

Listing 14: (Q2) PulledImage.

Q3b

Q3a

Span

Batch

Event

Jaeger-agent

CNCF 
adapters

kaiju metrics, logs, and traces kaiju hl

Figure 8: Event-flow for Q3 cf Listings 15 and 16.

data for resource usage attribution and anomaly detection [19].
Listings 15 and 16 show an example of query Q3 that detects
spans presenting anomalous latencies. Figure 8 shows the cor-
responding event flow. Q3a (Listing 15) creates an EPL table
MeanDurationPerOperation from the stream of Batches, which
are groups of spans received from the modified jeager agent. The
table tracks the mean and variance duration of each operation, and
is updated by the on-merge-update EPL construct using Welford
Online algorithm.

Q3b (Listing 16) uses the table above to identify anomalous
spans (HighLatencySpan). It implements the so-called three-sigma
rule, which assumes a Gaussian distribution of samples and de-
tects tails of the distribution fulfilling the equation (duration −

meanDuration) > 3 ∗ stdDev .

High-level events. kaiju-hl receives Events from other compo-
nents and perform analytical tasks that require integrating data
frommultiple sources. As discussed in Section 5.2, kaiju-hl supports
the definition of Event subtypes. Figure 9 shows the hierarchy of
events we used in our deployment at SighUp. KubeEvents identify
events related to Kubernetes event-log. Anomaly and its subtypes

1 create tab le MeanDurat ionPerOpera t ion ( operat ionName
s t r ing pr imary key , meanDuration double , m2 double ,
c oun t e r long )

2
3 on Span as s
4 merge MeanDurat ionPerOpera t ion m
5 where s . operat ionName = m. operat ionName
6 when matched then update
7 se t coun t e r = ( i n i t i a l . c oun t e r + 1 ) , meanDuration =

( i n i t i a l . meanDuration + ( ( s . d u r a t i o n −

i n i t i a l . meanDuration ) / coun t e r ) ) , m2 = ( i n i t i a l . m2 +
( s . d u r a t i o n − meanDuration ) ∗ ( s . d u r a t i o n −

i n i t i a l . meanDuration ) )
8 when not matched then inse r t
9 s e l e c t s . operat ionName as operat ionName ,
10 s . d u r a t i o n as meanDuration , 0 as m2 , 1 as coun t e r

Listing 15: (Q3a) Consuming Spans.

1 in se r t into Event
2 s e l e c t now ( ) as t imestamp ,
3 / / Pay l oad
4 new { t r a c e I d=t r ace IdToHex ( s . t r a c e I dH igh , s . t r a ce IdLow ) ,

span Id=Long . t oHexS t r i ng ( s . span Id ) ,
operat ionName=s . operat ionName ,
du r a t i o n=s . d u r a t i o n } as payload ,

5 / / C on t e x t
6 new { serv iceName=p . serviceName , s t a r t T ime=s . s t a r tT ime ,

node=s . ge tTags ( ) . f i r s t O f ( t =⇒ t . key =
' kube . node_name ' ) . g e tVS t r ( ) ,
pod=s . ge tTags ( ) . f i r s t O f ( t =⇒ t . key =
' kube . pod_name ' ) . g e tVS t r ( ) ,
namespace=s . ge tTags ( ) . f i r s t O f ( t =⇒ t . key =
' kube . pod_namespace ' ) . g e tVS t r ( ) } as c on t e x t

7 from Batch [ s e l e c t p r o c e s s as p , ∗ from spans as s ] ,
8 MeanDurat ionPerOpera t ion MDO
9 where
10 ( s . d u r a t i o n − MDO[ s . operat ionName ] . meanDuration ) >
11 3 ∗ s q r t ( (MDO[ s . operat ionName ] . m2 ) /

(MDO[ s . operat ionName ] . coun t e r ) )

Listing 16: (Q3b) HighLatencySpan.

Anomaly

Trace
Anomaly

High
Latency
Span

Metric
Anomaly

HighCPU

Log
Anomaly

KubeEvent

Container
Anomaly

High
Memory

Container
HighCPU

Pulled
Image

Event

Figure 9: Event hierarchy in Kaiju (partial). Colors indicate
events selected in Q4 (green), Q5 (red), and Q6 (yellow).

identify critical situations that may happen in the cluster. List-
ings 17, 18, and 19 show three examples of analysis enabled by
kaiju-hl using this hierarchy of events. Listing 17 shows a query
Q4 that identifies two Anomalys (green box in Figure 9) within two
minutes.
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1 s e l e c t ∗
2 from pattern [ Anomaly [ 2 ] t ime r : wi th in ( 2 min ) ]

Listing 17: (Q4) Pattern detecting two anomalies emitted
within 2 minutes.

Listing 18 shows a query Q5 that identifies containers with high
cpu usage followed by anomalous increase of latencies in traced
spans (red boxes in Figure 9).

1 s e l e c t a . pod as pod
2 from pattern [ a=ContainerHighCPUUsage and

b=HighLatencySpan ( pod = a . pod ) where
t ime r : wi th in ( 2 min ) ]

Listing 18: (Q5) Pattern detecting high cpu usage and
increased latency in spans emitted from the same pod.

Listing 19 shows a query Q6 that combines events and anomalies.
Q6 looks for pulled image events followed by container anomalies in
the same namespace (yellow boxes in Figure 9). ContainerHighCPU
event is a subtype of the ContainerAnomaly event, but other events
may exist and trigger the same pattern (see Figure 9 Query Q6 is
useful for example to identify rollouts updating container images
and causing wrong system behaviors.

1 s e l e c t a . pu l l ed Image , b . namespace
2 from pattern [ every a=Pu l l ed ImageEven t −> every

b=ContainerAnomaly ( namespace=a . namespace ) where
t ime r : wi th in ( 1 0 min ) ]

Listing 19: (Q6) Pattern detecting anomalies in containers
after the container image has been updated.

In summary, our case study shows that the data and processing
models of event-based observability respond to all the requests
of our stakeholders using a composition of high-level declarative
queries that integrate events coming from different sources and
defined at at different levels of abstraction (see again Figure 9).

7 MEASURING KAIJU OVERHEAD
This section reports a quantitative analysis of the performance of
our prototype implementation. For our evaluation, we collect all the
metric, logs, and traces described in Section 5.1 in the orchestrated
system, without performing any down-sampling. We run all our
experiments in a cluster composed of four nodes with the following
specs: (i) 1 master node with 2 cores x86-64 and 2 GB of RAM; (ii) 3
nodes each with 4 cores x86-64 and 4 GB of RAM.

The basic deployment is based on a micro-service application
running in a Kubernetes cluster and comprises:
• Kubernetes to build up a functioning cluster within the SighUp
infrastructure;

• components that use the Kubernetes API to emit additional clus-
ter metrics (node-exporter, kube-state-metrics) and logs (event-
router);

• the Rim app: a modified version of the HotR.O.D.24 demo app
from Jaeger (i) composed of four micro-services deployed sep-
arately with each service scaled up to 3 replicas; (ii) enabling

24https://github.com/jaegertracing/jaeger/tree/v1.5.0/examples/hotrod

Transmitted data
Master node 0.43 Mb/s
Other nodes 1.50 Mb/s

Table 2: Kaiju overhead. Data transmitted per node (avg).

configurable introduction of simulated latency / errors through
ConfigMap; (iii) enabling load tests; (iv) instrumentedwith Open-
Tracing to report traces tagged with Kubernetes metadata;

To include the Kaiju artifact we added the following components:
• Kaiju basic deployment with one module for each type;
• the Telegraf and Fluentd agents on each node;
• the custom Jeager agent that collects traces on each pods.
We measure the overhead of Kaiju by comparing the deployment

with and without our prototype. In both cases we apply a uniform
load test of 30000 requests over 10 minutes to the Rim application
(average 50 requests/second). During the tests we measured an
average of 2000 metrics/s from kaiju-metrics, 1500 logs/s from kaiju-
logs, 2500 spans/second from kaiju-traces.

Figure 10 compares the CPU and memory utilization for each
node, without Kaiju (left) and with Kaiju (right), when considering
all the rules discussed in Section 6. While both CPU and memory
utilization increase, both of them remain well below the maximum
resources available in our test deployment, demonstrating the fea-
sibility of event-based observability in practice. Notably, despite
Esper retains many events in memory during the analysis the mem-
ory utilization of all the nodes increases by only some hundreds
MBs. Thus, despite the limited memory resources of our test infras-
tructure, we could run Kaiju without applying any sampling to the
input data.

Table 2 reports Kaiju overhead in terms of network. Again, de-
spite we do not apply any sampling on observations, the additional
network bandwidth required to run Kaiju in our test environment
is easily manageable.

In summary, the above result makes us confident that on-the-
fly event-based observability is possible in production environ-
ments without significantly increasing the demand for hardware
and network resources with respect to the standard deployment of
a microservices-based application.

8 CONCLUSIONS
The number of companies relying on microservices architectures
and container orchestration is rapidly increasing. These architec-
tures bring several benefits but demand for new mechanisms and
tools to interprete the systems behavior. In this paper, we proposed
an event-based approach for observability in the context of con-
tainer orchestration systems. Ourwork stems from concrete require-
ments and demands collected from industrial stakeholders, and led
to the development and validation of Kaiju, an Esper-empowered
artifact, implementing the proposed data and processing model.

Kaiju provides near real-time processing of data enabling reac-
tivity. It decouples domain knowledge related to metrics, logs, and
traces to specific modules but, at the same time, enables to easily
integrate and correlate data forwarded from different modules. It
offers high-level processing abstractions and enables hierarchical
decomposition of the analysis. We evaluated Kaiju both in terms of
the benefits it provides to developers by integrating metrics, logs,

95

https://github.com/jaegertracing/jaeger/tree/v1.5.0/examples/hotrod


DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada M. Scrocca et al.

Figure 10: Kaiju overhead. CPU and memory utilization for each node without Kaiju (left) and with Kaiju (right).

and traces, and in terms of overhead. Even considering that Kaiju
does not perform any down-sampling, its adoption increasing the
load of 20% in the worst case.

In general, we believe that our work has the potential to delineate
a new research direction that brings the modeling and processing
abstractions of event-based systems into the realm of observability,
a key problem for software architects that aim to understand the
behavior of increasingly complex and distributed software systems.
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