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a b s t r a c t

Stream processing systems are increasingly becoming a core element in the data processing stack of
many large companies, where they complement data management frameworks to build comprehensive
solutions for processing, storage, and query. The adoption of separate tools leads to complex archi-
tectures that leave developers with the difficult task of writing application-specific code that ensures
integration correctness. This hinders design, implementation, maintenance, and evolution. We address
this problem with a new model that seamlessly integrates data management capabilities within a
distributed stream processor. The model makes the state of stream processing operators externally
visible and queryable, providing transactional guarantees for state accesses and updates. It enables
developers to configure transactions obtaining strong guarantees when needed and relaxing them
for higher performance when possible. We introduce the new model and formalize the transactional
guarantees it offers. We discuss the implementation of the model into the TSpoon tool and experiment
different algorithms to enforce transactional behavior. We evaluate the performance of TSpoon with
real world case studies and synthetic workloads, compare it with state-of-the-art tools for distributed
in-memory stream processing and data management, and analyze in detail the cost to ensure various
transactional semantics.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Increasingly many applications require a near real-time pro-
cessing of large volumes of data as they become available.
Examples include distributed systems monitoring, social media
notification services, and fraud detection systems. In general, the
ability to analyze streams of data is vital in today’s informa-
tion systems. Modern Stream Processors (SPs) address this need
for high throughput and low latency by leveraging clusters of
commodity machines to distribute the processing load, and offer
fault-tolerance mechanisms to quickly recover from machine fail-
ures. SPs adopt a dataflow model that represents data processing
tasks as directed graphs, where edges are streams of data and
nodes are operators that transform input streams into output
streams. The model imposes that each operator only accesses its
local state, thus avoiding state access conflicts and enabling a high
degree of parallelism.
The benefits of SPs in terms of performance, scalability, and

fault-tolerance led to their adoption in the data processing stack
of many companies. In these settings, SPs often complement more
traditional data management tools such as DBMSs to build com-
prehensive architectures for data processing, storage, and query
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[27]. For instance, monitoring systems often clean, transform,
and aggregate raw data as it becomes available, before storing
it and making it accessible to users; shopping websites validate
incoming user requests before confirming and registering them;
social media services analyze users’ actions and store them on
persistent datastores. All these scenarios exemplify the need for
software architectures that analyze and transform large volumes
of input data while storing some intermediate results of these
computations and making them available for other services.
Unfortunately, these architectures suffer from the complex-

ity of managing separate subsystems and force developers to
coherently integrate them, a difficult task that requires a deep
understanding of the semantics of individual systems and a care-
ful design and implementation of the integration mechanisms,
with the risk of introducing functional errors and performance
problems. As a consequence, these architectures may hinder the
design, implementation, and evolution of the overall system.
Moreover, they might waste resources due to unnecessary data
redundancy across different subsystems.
We address this problem by proposing a new model that

extends that of today’s SPs with data management capabilities
– storage and query of the results of the computations – thus
eliminating the need for external systems. The model allows
developers to expose the local state of SP operators and make
it queryable. It introduces transactional guarantees for state up-
dates and queries, and enables developers to selectively configure
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the level of isolation and the durability of transactions to obtain
stronger guarantees when needed and relaxing them for higher
performance when possible.
We implement the model in the TSpoon (Transactions ON the

Stream ProcessOr) system based on the Flink SP [7,14] and we
propose different algorithms to ensure transactional guarantees
at various levels of isolation and durability. We evaluate the
performance of TSpoon using case studies and synthetic work-
loads, comparing it with state-of-the-art tools for distributed in-
memory stream processing and data management. We confront
the proposed algorithms for transactional updates and queries,
and we analyze their benefits and costs. TSpoon does not in-
troduce any overhead to pure stream processing in the absence
of transactional requirements. While not being a full-fledged
database system, TSpoon also performs better than a state-of-the-
art distributed in-memory database in several data management
tasks.
In summary, the paper makes the following contributions:

(1) it introduces a newmodel that seamlessly integrates queryable
state and transactions within a SP; (2) it formalizes the semantics
of transactions on the state of a SP and proposes configurable
levels of isolation and durability; (3) it presents the TSpoon
system and explores different strategies to achieve the proposed
guarantees; (4) it offers a detailed evaluation of the performance
of TSpoon, focusing on the algorithms for transactional semantics
and on the comparison with state-of-the-art tools for distributed
stream processing and data management.
This paper extends our previous work on integrating stream

processing and state management [5]. This research sheds light
on some intrinsic limitations in the model of today’s SPs, with
the goal of pushing the boundaries of such model and provide
better data management capabilities without sacrificing perfor-
mance, scalability, and fault-tolerance. We are convinced that this
work can open new research perspectives and help building the
foundations of future SPs.
The paper is organized as follows: Section 2 overviews dis-

tributed SPs and motivates our work. Section 3 introduces our
model. Section 4 presents the design and implementation of
TSpoon and Section 5 evaluates its performance. Finally, Section 6
reviews related work and Section 7 draws conclusive remarks.

2. Background and motivations

This section motivates our work by overviewing the process-
ing model of SPs and discussing its limitations in terms of state
management capabilities.

2.1. The SP model

State-of-the-art SPs such as Apache Storm [32], Google
DataFlow [6], and Apache Flink [14] enable high-throughput and
low-latency distributed processing of data streams by adopting a
dataflow model that organizes the computation into a directed
graph of operators. The edges of the graph are the streams of
data – unbounded sequences of data elements – that flow from
operator to operator. Operators consume data from their input
streams and append data to their output streams. For instance,
a map operator transforms each input element into an output
element according to the behavior specified by a user-defined
function. Similarly, a filter operator propagates or discards
input elements according to a user-defined predicate. Depending
on the specific system, the graph can be explicitly defined by
the developer or generated from a higher-level specification, for
instance using a declarative API. Operators can be either stateless
or stateful. For stateless operators, the processing of each input
element only depends on the content of that element, while

Fig. 1. A SP implementation of a bank management application.

stateful operators accumulate some local state, which can be
accessed while processing input elements. For instance, a stateful
count operator receives a stream of words and continuously
stores and outputs the number of occurrences of each word
received so far.
This model offers task parallelism by enabling different opera-

tors to run simultaneously on the same or on different machines.
It also offers data parallelism by creating parallel instances of each
operator, with each instance working on an independent partition
of the input streams. Developers need only to specify the behavior
of operators and how the input streams can be partitioned among
parallel instances to guarantee a correct behavior. For example,
in the case of the count operator above, the stream needs to be
partitioned by word to ensure that all the occurrences of a given
word are processed by the same operator instance, which retains
the current count for that word. The SP runtime takes care of
operator deployment, data communication, and fault-tolerance,
which are arguably among the most complex and critical aspects
in distributed applications. To make this possible, the dataflow
model enforces some design rules that trade generality for per-
formance and scalability. Most notably, the model requires that
different operator instances do not share any state. These rules
limit the data management capabilities of SPs, as we discuss in
the remainder of this section.

2.2. Limitations in the SP model

Our work moves from two observations: (i) companies often
need to integrate data analytics tasks – complex computations
over the input data – with data management tasks — storage and
retrieval of the results of such computations; (ii) the SP model is
suitable for data analytics, but presents some severe limitations
in data management. As a consequence, companies couple SPs
with data management systems, building complex architectures
that hinder the design, implementation, and maintenance of the
overall solution. This work aims to offer a unifying solution that
overcomes some of the limitations of today’s SPs to accommodate
data management side by side with analytics.
To better illustrate the limitations of the SP model in data

management tasks, let us consider a simple bank application
that includes typical aspects of data management. Fig. 1 shows
part of the application: from the left, users produce a stream
of bank requests, which can be either deposits, withdrawals, or
transfers. Requests are first processed by a request validator
operator that stores the amount of money that each user has
transferred from or to her account in the last month and blocks
further requests when this amount overcomes a given threshold.
Requests are then forwarded to the account balance operator
that retains the current account balance for each user. Both
operators consist of four instances (v1 .. v4 and b1 .. b4), each
responsible for a subset of the accounts.
Although the example is kept simple for the sake of illustra-

tion, it highlights patterns that are common to many applications.
First, input streams are analyzed on-the-fly to compute fresh
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statistics (in the example, the amount of money transferred in
the last month) and to perform input validation (in the example,
to check if the request can be accepted): data cleaning and val-
idation is typical of virtually every system that accepts requests
and data from the external environment, including websites that
handle requests from users, and monitoring systems that receive
data from other devices. Second, some computation results are
used to update the state of the application (in the example,
the account balance), which is made available to other software
systems. Next, we use this example to illustrate the limitations of
the SP model in terms of transactional guarantees and queryable
state.

Transactional guarantees. The impossibility to share state be-
tween operator instances makes it hard to implement the bank
management application in a SP while preserving correctness
guarantees. Consider a transfer request and its effect on the state
of account balance: the request should update the balance of
both the provider and the recipient accounts; however, due to
partitioning, the two accounts can be stored in different instances
of the operator. In this situation, a developer can follow two
paths. On the one hand, she can make sure that the state of
account balance is not partitioned, so that a single instance
can process transfer requests. However, this approach gives up
on scalability, which is one of the main advantages of SPs. On the
other hand, she can split each transfer request into a withdrawal
from the provider account and a deposit to the recipient account.
Also this second option opens several problems. (1) A deposit
should succeed only if the corresponding withdrawal terminates
successfully. For instance, if the provider account does not contain
enough money, the entire transfer should be discarded. In other
words, we would like the transfer to satisfy some consistency
constraints – take place only if there is enough money in the
source account – and to be atomic — if it succeeds, it must affect
both the provider account and the recipient account, and if it fails,
it must affect none of them. Atomicity should extend to multiple
operators as well: if a request does not succeed in account
balance, its effects should also be discarded from request val-
idator. Unfortunately, SPs do not offer consistency constraints,
nor they enable atomic execution of a group of operations in
different instances. (2) Requests should not interfere with each
other. Consider for instance the following situation: Bob owns
5$, receives 10$ from Alice, and transfers 10$ to Chuck. If the
payment from Alice fails (that is, there is not enough money on
Alice’s account), Bob should not be able to complete the transfer
to Chuck. In other words, we would like transfers to take place
in isolation and not to access dirty state left by other not yet
completed transfers. Again, since SPs do not offer mechanisms
to group together the withdrawal and the deposit that are part
of a transfer, we cannot ensure that both have been completed
before performing further operations. (3) Once a transfer has been
performed, it should be stored in the system indefinitely, even in
the case of failures. In other words, transfers should be durable.
While all today’s SPs offer fault-tolerance mechanisms, they do
not always guarantee that the operations are executed in the
same order upon recovery, which might lead to different states
after recovering from a failure.
In summary, SPs partition their internal state across operator

instances. This enables task and data parallelism but prevents
the correct implementation of application scenarios that require
ACID (atomic, consistent, isolated, durable) transactional guaran-
tees for state updates, as exemplified by the bank management
application above.

Queryable state. Even if SPs retain state information during pro-
cessing, this state is hidden into operators and cannot be queried
and retrieved on demand from outside the SP. To access relevant
state, developers must store it in external data management
systems. In our banking example, the account balance should
be modified to output the current state of each account and
this information should be used to update an external DBMS.
However, this approach would lead to data duplication, with
potential waste of resources and additional effort to integrate
multiple systems and keep them in a consistent state.
Despite some initial proposals to make the operator state

visible [12], no SP supports queries that span multiple operator
instances, or considers the consistency of the returned informa-
tion. For instance, in the case of bank transfers, if we could access
the state of multiple accounts from account balance, we should
see a transfer completed both in the provider and in the recipient
accounts, or in none of them. In addition, we should not be
allowed to access any dirty state caused by the computation of
failing transfers. Finally, once we observe the effects of a transfer,
those effects should reflect in any subsequent state access.
In summary, application scenarios such as our bank man-

agement application would benefit from query capabilities that
retain transactional guarantees.

2.3. Executive summary

To overcome the limitations of SPs in data management tasks,
current architectures couple SPs with external data stores, where
they duplicate state information. However, the complexity of
these architectures forces developers to manually integrate the
different sub-systems in a coherent way. They may prove in-
efficient or overmuch expensive due to the need of replicating
data and processing tasks: the input streams of new data get
duplicated and processed by a layer responsible for data storage,
query, and retrieval, and by a layer responsible for (streaming)
data analytics.
We tackle this problem by proposing a novel SP model that

enables (i) query to the operator state, and (ii) transactional
semantics for read queries and state updates. The model lets
developers selectively apply transactional guarantees only to the
operators that need them. Moreover, developers can configure
the transactional semantics that the system offers by select-
ing different levels of isolation and durability, thus choosing
the best trade-off between performance and consistency for the
application at hand.

3. Transactions on a stream processor

We extend the dataflow model of distributed SPs by intro-
ducing the concept of transactional subgraph (t-graph), which
identifies a portion of the graph of computation where the state of
enclosed operators is accessed and updated with transactional se-
mantics. Each streaming element that enters the t-graph initiates
a read-write transaction: all its effects on the state of operators
within the t-graph are processed as a single transaction with
ACID guarantees. The state of operators within the t-graph is also
externally queryable through read-only transactions. As we will
clarify later, by limiting the scope of transactions to t-graphs, the
model provides data consistency when needed and high perfor-
mance when possible. Furthermore, developers can configure the
level of isolation and the durability for t-graphs, selecting the best
trade-off for the application at hand.

3.1. Stream processing model

Building on the dataflow model of distributed SPs, we rep-
resent a computation as a directed graph G = (N, E), where
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Fig. 2. The topology of a graph of computation: logical and physical view.

the nodes in N are the processing operators and the edges in E
are the streams of data between operators. Streams are typed,
meaning that all the elements in a stream share the same struc-
ture. Fig. 2a shows a graph of computation that includes five
operators n1 . . . n5. An operator can receive input elements from
one or more streams and append output elements to one or more
streams. Streams originate from sources (such as operator n1 in
Fig. 2a) that receive data from the external environment, and
terminate in sinks (such as operator n5 in Fig. 2a) that return
results to the external environment. We abstract the behavior
of an operator ni ∈ N with a characteristic function fn that
determines how the operator processes input elements, updates
its internal state (if any), and produces output elements.
Operators can be replicated in multiple instances for scalabil-

ity, with each instance considering a portion of the input streams.
We denote the k instances of an operator ni ∈ N as n1i , . . . , n

k
i .

An instance nj
i processes one input element at a time on a single

processing thread, and appends zero, one, or more elements to
each of its output streams, according to the characteristic function
fni of the operator. Fig. 2b shows the physical view of a graph of
computation, with multiple instances of each operator.
As in the original SP model, the state of operators is local to

each instance such that two instances of the same or different
operators do not share any state. Developers control the parti-
tioning strategy through a keyBy function, which computes a key
for a given element. Elements with identical keys are guaranteed
to be processed by the same operator instance, which retains
any state for that key. The partitioning strategy is relevant in the
case of stateful operators. For example, in the bank management
application in Fig. 1, account balances are partitioned by account
number. All the requests involving a given account need to be
processed by the same operator instance, the one that stores that
account. Developers can enforce this by indicating the account
number as the key of the elements that enter account balance.
In general, each instance of an operator ni can produce ele-

ments for any instance of a downstream operator nj. For example,
n11 in Fig. 2b might produce elements for any instance of operators
n2 and n4. However, if two operators have the same partitioning
strategy, then the kth instance of operator ni (nk

i ) is guaranteed to
produce elements only for the kth instance of a downstream op-
erator nj (nk

j ). This is exemplified by the communication between
n2 and n3 in Fig. 2b.
We assume that the communication channels between in-

stances (the arrows in Fig. 2b) are FIFO ordered, meaning that the
elements are received and processed by the downstream operator
in the same order in which they are produced by the upstream
operator.1

1 To the best of our knowledge, this assumption holds in all distributed SPs,
which usually adopt TCP communication channels.

We define a causal relation between stream elements as fol-
lows. Element e1 causes element e2 iff e2 is produced by an
operator instance nj

i as a result of processing e1, and we write
e1 → e2. We denote by e1

∗
−→ e2 the transitive closure of the

causal relation.

3.2. Data management model

Our model introduces data management capabilities within
transactional subgraphs (t-graphs). A t-graph T = (NT , ET ) is a
connected subgraph of G that is constrained to have a single input
edge inT . Developers can introduce multiple t-graphs, provided
that they do not share any operator. We denote ST (the state of
T ) as the set of all the stateful operators that are part of the t-
graph T . Each operator s ∈ ST has a name ns to make it visible
and queryable by name from outside the SP. As in the traditional
SP model, an operator s ∈ ST processes elements partitioned by
key: each operator instance stores the state for the partition it
is responsible for in the form of key–value pairs (k, v), k ∈ Ks,
v ∈ Vs, where Ks is the key domain and Vs is the value domain for
operator s. Keys are unique, meaning that an operator s can store
only one value for each key. An operator s ∈ ST can be associated
with an integrity constraint that determines the set of valid values
for a given key. In the bank application in Section 2, a developer
can introduce an integrity constraint that requires the amount of
money for each account to be non-negative.
Each streaming element e entering a t-graph T determines a

read–write transaction: all the state changes that e induces on
ST take place with transactional semantics. External queries are
read (only) transactions that retrieve part of the state in ST with
transactional semantics. More precisely, we model the interac-
tion with ST with two operations: read and write, which access
and update the value for a key, respectively. Insert and delete
operations are considered as special cases of write. We model
a transaction as an ordered set of operations. Queries include
only read operations. Read-write transactions include also write
operations: they are initiated by an element e entering T and
comprise all the operations performed by e or by any element e′

caused by e (e
∗

−→ e′) on any operator s ∈ ST during the execution
of its characteristic function fs. The assumption that a t-graph
has a single input edge guarantees that elements entering the
t-graph from different input edges cannot simultaneously start
transactions that might interfere with each other, for instance if
some of their elements are combined in a join operator. For the
same reasons, t-graphs do not share operators.
We associate each transaction with a unique identifier and

we denote ti as the transaction with identifier i. Transactions
can either succeed (commit) or fail (abort). We call read set Ri
the set of keys that transaction ti only reads and update set
Wi the set of keys that transaction ti also writes. We model
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the evolution of ST by associating versions to key–value pairs.
Versions can be created, installed, or invalidated. We denote ri(skj )
as a read operation in transaction ti that reads version j for key k
in the stateful operator s. We denote wi(skj ) as a write operation
in transaction ti that creates version j for key k in operator s.
If a transaction ti aborts, it instantaneously invalidates all the
versions it created for any key in Wi. If a transaction ti commits,
it instantaneously installs the last version it created for any key
in Wi.
Each element that exits in a t-graph T and that belongs to

transaction ti piggybacks the outcome of the transaction – com-
mit or abort – and the set of installed versions, if any. This enables
further analysis of the transaction effects downstream.
A history H over a set of transactions consists of a partial

order among the read and write operations of those transactions.
A history is always complete – contains the union of all the
operations in all the transactions – and always preserves the
order of operations within individual transactions.

3.3. Transactional guarantees

We now formalize the transactional guarantees that our model
offers in terms of constraints on the presence and order of oper-
ations in the history.

Atomicity. Our model provides atomicity by ensuring that every
transaction ti either installs the last version it created for any
key in Wi or invalidates all the versions it created for any key
in Wi. This provides ‘‘all or nothing’’ semantics, ensuring that all
the effects of a committed transaction are stored and none of
the effects of an aborted transaction are stored. No intermediate
states are allowed.

Consistency. We enable the developers to specify integrity con-
straints on the value of individual keys in t-graphs. Our model
ensures that the state in a t-graph is always consistent: for every
t-graph T , for every stateful operator s ∈ ST and for every key–
value pair (k, v) stored in s, the installed version of k satisfies
the integrity constraints for k. Since versions are installed by
committed transactions, this means that successful transactions
bring the t-graph from a consistent state to another consistent
state. The versions of aborted transactions are instead invalidated.

Isolation. Isolation limits the interaction between concurrently
executed transactions that read and write common keys. Our
model allows developers to select different levels of isolation.
More relaxed levels introduce fewer constraints and thus enable
a higher degree of concurrency and higher performance. Con-
versely, stricter levels constrain the interaction between transac-
tions more and thus offer higher guarantees but a lower degree
of concurrency and performance. We inherit and extend stan-
dard isolation levels from the database literature [4] and we
present them from the least to the most constraining. Each level
subsumes the previous one.
Isolation level PL1 avoids write dependencies between con-

current transactions: the effects of transactions are the same as if
their write operations were performed in some sequential order.
Specifically, if transaction t1 installs version v1 for key k, and
transaction t2 over-writes k by installing version v2, there should
not be another key k′ in which the reverse occurs, that is, all
writes of t1 must be ordered before or after all writes of t2.
Isolation level PL2 additionally requires transactions to only

read installed versions.2 Specifically, under PL2, a valid history

2 Reading non-installed versions results in the read-uncommitted anomaly
[11]. For this reason, PL2 is also referred to as read-committed in the ANSI
standard [1].

cannot contain a write operation w1(ksv) where transaction t1
writes (creates) version v for key k in state s followed by a read
operation r2(ksv) where transaction t2 reads version v, unless t1
commits and installs v.
Isolation level PL3 additionally prevents transactions from

overwriting versions read by other transactions that have not yet
completed. Specifically, under PL3, a valid history cannot contain
a read operation r1(ksv1 ) where transaction t1 reads version v1 for
key k in state s followed by a write operationw2(ksv2 ) where trans-
action t2 writes version v2 before transaction t1 is committed or
aborted. Isolation level PL3 is also known as (conflict) serializable
isolation [11] and ensures that the state of a t-graph is the same
as if all the transactions were executed in some sequential order,
one after the other.
We further provide a stricter level of isolation that we denote

PL4. It extends level PL3 by ensuring that the state of a t-graph
is the same as if all the read–write transactions were executed
sequentially in the same order in which they enter the t-graph.
This level corresponds to strict serializability in classic database
literature [29].

Durability. Given a t-graph T and its state ST , durability ensures
that the effects that processing an input element e has on ST
persist even in the case of failure. Our failure model considers
both software failures in some operator instances and hardware
failures in some components of the infrastructure. Our model
ensures that the effects of transactions appear as if transactions
were executed exactly once in the order expressed by the history,
also in the presence of failures. In other words, it is not possible
that two (read or read-write) transactions that take place before
and after a failure, respectively, observe different orders in the
history of operations.

3.4. The model in action

To further clarify our model, we show how it can be used
to implement the bank management application in Fig. 1. Recall
that request validator blocks requests based on the history
of requests for a given account, and account balance stores the
current value of each account. As discussed in Section 2, SPs pre-
sented two main limitations in this context: the impossibility to
access the internal state of operators and the impossibility to pro-
cess bank transfers correctly without sacrificing the distribution
of data and processing. Fig. 3 shows a possible implementation
of the bank application in our model. To guarantee transactional
semantics, we include all the operators in a t-graph (dashed box
in Fig. 3). We introduce a split operator (consisting of two
instances in Fig. 3) that processes user requests and redirects
them to the instances of the downstream request validator
and account balance partitioned by account — that is, the
keyBy function specifies the account number as the key for each
request. A bank transfer request is split in a withdrawal from
the source account and a deposit to the receiver account. Finally,
account balance has an associated integrity constraint that
requires the amount of each bank account to be non-negative.
Our model avoids the problems discussed in Section 2 and

correctly processes bank transfers even if the information on bank
accounts is partitioned across multiple instances of request
validator and account balance. Indeed, the withdrawal and
the deposit that compose a bank transfer originate from a single
input request that enters the t-graph and are processed as part
of a single read–write transaction with ACID guarantees. Atom-
icity and consistency ensure that if the withdrawal violates the
integrity constraints on the account balance, then none of the
effects of the request is registered in the state of the operators.
Instead, the effects of successful requests reflect on the state
of both request validator and account balance. Isolation
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Fig. 3. Implementation of the bank management application in our model.

guarantees that two requests do not overlap. By selecting level
PL3 or higher, developers ensure that requests behave as if they
were executed sequentially. Durability ensures that the effect of
successful requests persisted even in the case of failures. Finally,
the state of account balance is exposed for queries, which are
guaranteed to return all the effects of a bank transfer or none of
them.

3.5. A comparison with the database model

So far, we discussed how our model enhances SPs with data
management capabilities. To better capture the characteristics of
our model, it is useful to directly compare it with the classic
approach of database systems.
Our model inherits from databases the concept of queryable

state through read-only transactions. Differently from databases,
read–write transactions cannot be executed on-demand, but are
instead statically deployed as t-graphs within the graph of com-
putation of the SP, and are automatically executed whenever
new data enters the t-graph. Accordingly, a database adopts a
pull model, where on-demand transactions operate on (almost)
stationary data, while our model adopts the push model that is
typical of data streaming systems, where data is pushed and flows
through the stationary operators that build t-graphs.

4. Implementation

We implemented our model in the TSpoon (Transactions ON
the Stream ProcessOr) system,3 which builds on the Apache Flink
[14] open-source distributed SP.

4.1. TSpoon API

We illustrate the TSpoon API with an implementation of the
bank application from Section 3.4, where we omit the request
validator for simplicity. The application receives a stream of
bank transfer requests, splits each of them into a deposit and
a withdrawal, and executes them within a single transaction.
Listing 1 shows the code of the application.

Listing 1: Bank transfer example in TSpoon

DataStream<Transfer > transferStream = getInputStream ( . . . ) ;

/ / Open a t ran sac t i ona l subgraph

TransactionalDataStream <Transfer > t = transferStream . openTransaction ( ) ;

/ / S p l i t a t r an s f e r in to a withdrawal and a depos i t

TransactionalDataStream <BankOperation> opStream =

3 TSpoon is open-source and publicly available at https://github.com/affo/t-
spoon.

Fig. 4. Bank management application: architecture of the t-graph.

t . flatMap ( t r > {

co l l e c to r . c o l l e c t ( t r . getDeposit ( ) ) ;

co l l e c to r . c o l l e c t ( t r . getWithdrawal ( ) ) ;

} ) ;

/ / Apply the depos i t / withdrawal to the " account balance " s t a t e

/ / and c l o s e the t ransac t i on

opStream . keyBy (op > op . getAccountNumber ( ) )

.map( " account␣balance " , Str ing . class , F loat . class ,
( oldVal , op) > oldVal + op . getAmount ( ) ,

value > value >= 0 ,

value )

. c loseTransact ion ( ) ;

TSpoon augments the Flink API with two openTransaction
and closeTransaction operators to define the boundaries of a
t-graph. In Listing 1, TSpoon takes in input a stream of bank trans-
fers transferStream. The openTransaction opens a t-graph
and transforms the input DataStream into a Transaction-
alDataStream t. A flatMap operator splits each transfer into
the corresponding deposit and withdrawal, creating a stream
of BankOperation. TSpoon offers an overload of several Flink
operators that makes the internal state and its changes explicit.
In Listing 1, the account balance operator is implemented as
a stateful map: the first three arguments are the name of the
operator and the types of the key and value. The fourth argument
indicates how the value for a given key is updated when a new
bank operation op is received. The fifth argument is the integrity
constraint on the value. The last argument is the output of the
operator. Finally, the closeTransaction() closes the t-graph.
External components can submit queries (read transactions)

referring to stateful operators (for example, account balance)
by name. TSpoon supports both the retrieval of individual values
by key and predicate queries.

4.2. TSpoon architecture and transactional guarantees

Fig. 4 shows how TSpoon instantiates the t-graph defined in
Listing 1. The t-graph contains the account balance stateful
operator with the current balance of bank accounts partitioned
across two instances; split is the flatMap function that re-
ceives transfer requests and redirects them to the instances of
account balance that are responsible for the bank accounts in
each request. As an example, Fig. 4 shows the stream elements
involved in the processing of two transfer requests, represented
as square boxes of different colors (light gray for one request
and dark gray for the other one). Each request is managed by
an instance of the split operator that transforms the transfer
into a deposit and a withdrawal, each handled by an instance of
account balance. The close operator propagates downstream
all the results of account balance enriched with the outcome
and set of changes of the transaction they belong to.
For each t-graph, TSpoon automatically and transparently in-

stantiates the open, query, and close operators, also shown

https://github.com/affo/t-spoon
https://github.com/affo/t-spoon
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Fig. 5. Implementing transactions: protocol overview.

in Fig. 4, which implement the protocols to process queries and
to enforce the required transactional guarantees. In a nutshell,
the open operator wraps all incoming elements into data struc-
tures that carry metadata about transactions. Since individual
transactions might be invalidated and re-executed multiple times
to satisfy isolation constraints, the open operator also stores
pending transactions. The query operator acts as a proxy for
queries (read-only transactions) and ensures that they achieve
the desired isolation level.
Fig. 5 overviews the communication that takes place to enforce

transactional guarantees while updating stateful operators in a
t-graph. Fig. 5 shows a t-graph with three stateful operators
op1, op2, and op3, each having n parallel instances. It shows the
communication for a transaction that involves operators op11, op

1
2,

op13, op
2
3. Stateful operators process the input elements (streaming

elements in Fig. 5) and try to apply the requested changes to
their local state. They propagate downstream the outcome of
the changes, which might also be negative (abort) in the case
of the violation of some integrity constraint. The close operator
collects all outgoing elements to determine the global outcome of
a transaction, and communicates it back to the stateful operators
involved (outcome notification in Fig. 5). When all these state-
ful operators acknowledge the communication (outcome ack in
Fig. 5), the close operator propagates the result of the transac-
tion downstream, and acknowledges the end of the transaction to
the open operator (transaction ack in Fig. 5). At this point,
we say that the transaction is complete. Although not shown in
Fig. 4, TSpoon can create multiple instances of the open and
close operators to process different transactions in parallel.

4.2.1. Data structures
The open operator wraps each incoming element inside a data

structure with metadata fields that are accessed and modified
by the operators in the t-graph. TSpoon extends the standard
Flink operators to provide the same processing semantics when
used inside t-graphs, while also dealing with the management
of metadata. The metadata for an element e that is part of a
transaction t comprise the following fields:

• id. The unique identifier of the transaction t .
• tsexec . A sequential timestamp associated to the current exe-
cution of t: a transaction may be aborted and re-executed
multiple times due to isolation conflicts, in which case it
preserves the same id but obtains different timestamps at
each execution.

• tscompl. The execution timestamp of the last transaction that
the open operator knows to be complete.

• fragment. Tracks the number of element that are part of a
transaction t . It enables the close operator to compute the
number of elements it must receive for t .

• update. Changes (write operations) performed on the state-
ful operators.

• outcome. Outcome of the processing performed in the state-
ful operators: commit, abort (violation of integrity con-
straints), or retry (violation of isolation constraints).

The open operator assigns the fields id, tsexec , and tscompl. Each
operator in the t-graph that processes an element e1 producing
element e2 copies these fields from e1 to e2. The open operator
ensures that timestamps are unique. The fragment tracks the
number of elements that each operator in the t-graph produces.
For instance, consider again the bank management application
in Fig. 4: when the split operator processes a bank transfer
request, it generates a deposit and a withdrawal, and uses the
fragment field to notify downstream that it produced two ele-
ments. The close operator inspects the fragment field to deter-
mine when it received all the elements for a transaction. Stateful
operators process incoming elements and propagate downstream
the state changes they perform – update field – and the local
outcome of the processing, which might indicate the occurrence
of errors such as the violation of an integrity constraint.

4.2.2. Atomicity and consistency
TSpoon achieves atomicity and consistency by implementing

a two phase commit (2PC) protocol [11], where stateful opera-
tors are participants and the close operator is the coordinator.
The 2PC protocol exploits the sequence of communication steps
shown in Fig. 5. Consider a transaction ti with id i and tsexec
ts. Consider a stateful operator o that processes an element e
that is part of ti. While processing e, operator o can access its
local state and create new versions for its local keys. Operator o
decorates the output elements with the outcomemetadata, which
is propagated downstream to all the elements caused by e. The
outcome is commit if the processing terminates successfully, abort
if the processing violates some integrity constraints, or retry if the
processing violates some isolation policy. A retry is semantically
equivalent to an abort, but additionally causes TSpoon to attempt
re-executing the transaction.
The close operator collects the outcomes from all state op-

erators involved in ti, using the fragment field to determine the
number of elements to wait for (streaming elements in Fig. 5).
The global outcome for ti is commit if all the instances returned
commit, retry if there is at least one retry, and abort otherwise.
The close operator notifies the global decision to the stateful
operators involved (outcome notifications in Fig. 5), which install
– in the case of commit – or invalidate – in the case of abort/retry
– the versions created for ti. Every stateful operator involved
acknowledges the close operator (outcome acks in Fig. 5), which
propagates downstream the results of ti, if the outcome is either
commit or abort, or asks the open operator to schedule a new
execution for ti if the outcome is retry. The close also operator
notifies the open operator that the transaction with execution
timestamp ts is complete (transaction ack in Fig. 5). As we will
see, this information is used to ensure isolation.
The protocol above ensures consistency by checking the in-

tegrity constraints when accessing stateful operators, and atom-
icity by either applying or invalidating all the changes triggered
by a transaction.

4.2.3. Isolation
TSpoon implements isolation through concurrency control

protocols. We implemented two alternative protocols. (i) Lock-
based protocols (LB) lock keys to prevent concurrent access
from other transactions. (ii) Timestamp-based protocols (TB) use
timestamps to determine which version for a key to access within
a given transaction. We implement isolation levels PL2, PL3, and
PL4, since PL2 can be implemented with no additional cost with
respect to PL1. In addition, in the case of LB the implementations
of levels PL2 and PL3 coincide, so we consider only the latter.
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Lock-based protocols. In LB protocols, each stateful operator
maintains a queue of elements for each key. When an element
e belonging to transaction t is processed for key k, t acquires an
exclusive lock for k, preventing concurrent accesses. The lock is
released when the close operator notifies the global outcome of
t (outcome notifications in Fig. 5), which results in installing or
invalidating the state changes performed by t . Each subsequent
element e′ from a transaction t ′ that wants to access the same
key k waits in the input queue. This ensures that e′ accesses the
version installed by e, if t commits, or the previously installed
version, if t aborts.
This strategy serializes operations on individual keys, but still

allows write operations from concurrent transactions to be in-
stalled in different orders in different instances of one or more
operators, which violates the requirement of PL1. Consider for
example the two bank transfer requests in Fig. 4 and assume
that they involve the same two bank accounts a1 and a2. Since
the requests are handled concurrently in the split operator, it
is possible that account a1 processes the light gray request first,
while account a2 processes the dark gray request first. TSpoon
prevents this violation by forcing transactions to execute in order
with respect to their execution timestamp tsexec . In particular,
it aborts transactions that attempt to execute operations out of
timestamp order and schedules them for re-execution (with a
higher timestamp). This strategy avoids deadlocks: if transaction
t2 is waiting for some operation of transaction t1 to complete,
then the execution timestamp of t2 is larger than that of t1. As a
consequence, if some operator receives an element from t1 after
an element from t2, it aborts t1 preventing it from locking any
resource. Finally, to further reduce the probability of re-executing
transactions, the LB protocol reorders queued elements according
to their execution timestamps while they wait to acquire some
resource.
The above protocol ensures that a transaction can access a key

only when the previous updates to that key have been installed,
thus preventing the read-uncommitted anomaly. Moreover, all
the (read and write) operations that involve the same keys are
executed in timestamp order. This ensures that the results of
transactions are the same as if they were executed sequentially in
timestamp order. Thus, this algorithm guarantees isolation level
PL3.
The protocol, however, does not guarantee isolation level

PL4, since in the case of re-execution the order of execution
timestamps may not reflect the order of transaction ids. If the
developer requires level PL4, TSpoon introduces an additional
sequencer component before each stateful operator in a t-graph,
which consists of a single instance and reorders transactions ac-
cording to their id. The sequencer adopts the same mechanism
(based on fragment) of the close operator to determine the
number of elements that compose a transaction.

Timestamp-based protocols. TB protocols do not lock resources,
but rather use timestamps to ensure that transactions always
read/update versions that are consistent with the desired isola-
tion level. In the case this is not possible, they abort transactions
and schedule them for re-execution. In the following, we define
the timestamp of a version as the timestamp of the transaction
that created that version.
PL2 Isolation level PL2 constrains the order between writes. To
enforce it, we ensure that the write operations of two transactions
are executed in timestamp order everywhere: we enable a trans-
action to update (write) a key only if there is no other version
for the same key with a higher timestamp, otherwise we abort
and retry the transaction. PL2 further prevents transactions from
reading versions that have not been installed yet. To ensure this,
we force a transaction t to always read the latest version of a key
that is known to be installed when t starts executing. Recall that

the open operator assigns to each transaction a tscompl that is the
timestamp of the last transaction that it knows to be complete.
Thus we force a transaction t with tscompl tc that wants to read
key k to access the latest version of k with timestamp lower or
equal to tc .
PL3 Isolation level PL3 requires transactions to execute as if they
were performed sequentially. To ensure this, we force transac-
tions to read installed versions as in PL2, and we enable them to
update a key only if there is no version for the same key higher
than tscompl. Although similar, PL2 and PL3 differ with respect
to the constraints on the versions that they can read and write,
which influence the transactions that are re-executed due to the
violation of such constraints.
PL4 Isolation level PL4 requires transactions to execute as if they
were performed sequentially in id order. To ensure this property
we adopt the same implementation as in PL3 but we add a
component before the close operator, consisting of a single
instance that collects all the elements from all the transactions,
orders them by their id, and checks for violations in the order of
execution. If this is the case, it aborts violating transactions and
schedules them for re-execution.

4.2.4. Queries
TSpoon provides access to the state of a t-graph using the

query operator as a proxy. It ensures that queries access a
consistent snapshot of the t-graph by obtaining the timestamp
of complete transactions from the open operator. When trying
to access a key, a query (that is, a read-only transaction) is
assigned the timestamp tc of the last completed (committed or
aborted) transaction, and it always accesses the latest version
with timestamp lower or equal to tc .

4.2.5. Durability
TSpoon provides durability by relying on and extending the

fault-tolerance algorithm of Flink, based on distributed snapshot-
ting [13]: special markers periodically flow through the network
of operators from sources to sinks; upon receiving a marker,
each stateful operator stores its state to some durable storage
and propagates the marker downstream. Upon failure, operators
restore their state from the last snapshot, and sources replay all
the elements that were not part of the snapshot.
TSpoon cannot reuse this mechanism out of the box to save

the state of t-graphs for two reasons. (i) In the t-graph some
state changes are asynchronous with respect to the flow of stream
elements in the network of operators, and thus the markers
might not capture a consistent snapshot of the state. For example,
the close operator communicates back to stateful operators the
global outcome of a transaction, which determines if the versions
created by that transaction are installed or invalidated. (ii) In the
case of re-executions, elements could be processed in a differ-
ent order with respect to the first execution. This could violate
durability guarantees: for example, two queries that take place
before and after a failure could observe the effects of transactions
in different orders.
To overcome these problems, TSpoon integrates the Flink algo-

rithm with a Write Ahead Log (WAL) that stores the operations of
successful transactions. The close operator registers on the WAL
all state changes performed by a transaction right before forward-
ing the results of that transaction downstream. For each key in a
stateful operator, the WAL preserves only installed updates and
the exact order in which they were installed. The WAL is made
available to all the operators in the t-graph in the case of recovery
through external storage services such as a distributed filesystem.
Upon recovery, we can identify three kinds of transactions.

(i) Transactions whose installed versions are stored in the last
snapshot of stateful operators. (ii) Transactions whose installed
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versions are stored in the WAL but not in the last snapshot of
stateful operators. (iii) Transactions that are not stored in the
WAL (not yet completed).
TSpoon restores the updates of the first type of transactions

from the Flink snapshot. Since they are part of the snapshot,
Flink does not try to replay them. Then, it restores the effects
of the second type of transactions from the WAL, thus ensur-
ing that they are applied in the same order as in the original
execution. Since these transactions are not part of the snap-
shot, Flink attempts to replay them. The open operator discards
these re-executions, since it knows that the replay is performed
through the WAL. Finally, the close operator propagates the
results of these transactions downstream, to enable the recovery
of downstream operators. The third type of transactions were
not yet completed at the time of failure. TSpoon restarts their
execution when the open operator receives the corresponding
input elements.

5. Evaluation

TSpoon aims to reduce the complexity of data processing and
management architectures. To achieve this goal and be useful
in practice, it has to provide an adequate level of performance
in terms of the volume and velocity of data it can handle. Our
TSpoon prototype builds on top of Flink 1.3.2 and offers exactly
the same performance of Flink for pure stream processing tasks
that do not use transactional capabilities. Hence, our evalua-
tion assesses the behavior of TSpoon in the presence of transac-
tions, with four main goals: (i) study the absolute performance
of TSpoon against a state-of-the-art solution for data manage-
ment in distributed environments; (ii) investigate the trade-off
between performance and transactional guarantees with differ-
ent levels of isolation and durability; (iii) compare LB and TB
protocols; (iv) study how other workload parameters affect the
performance of TSpoon.

5.1. Experiment setup

We deploy TSpoon on a cluster of 5 Amazon EC2 t2 xlarge
instances (with 4 CPU cores and 16 GB of RAM) and 15 t2 large
instances (with 2 CPU cores and 8 GB of RAM), for a total of
50 CPU cores and 184 GB of RAM. As a default scenario, we
consider the bank application presented in Section 4: TSpoon
receives a stream of input bank transfers, and splits each transfer
in a deposit and a withdrawal that are processed within a single
transaction. We store 100k bank accounts partitioned across 50
instances of the account balance stateful operator, one for each
CPU core. The source and destination accounts for each bank
transfer are selected randomly following a uniform distribution.
We assess the performance of TSpoon by measuring its

throughput and latency. We measure the average latency when
the system is unloaded, by submitting input requests sequen-
tially, sending an element at a time. In terms of throughput,
we want to determine the maximum value of input elements
that TSpoon can sustain before becoming overloaded and losing
responsiveness (we call this ‘‘the sustainable throughput ’’). In
practice, for each experiment we increase the input rate stepwise
until the latency overcomes a given threshold (20 times the
latency of the unloaded system). We repeat all experiments at
least 8 times. For each measure, we plot the average value and
the standard deviation.

5.2. Testing correctness

In addition to the usual techniques for unit testing, which
we put in place throughout the entire implementation phase

Table 1
Default scenario: comparison with Flink and VoltDB.

Latency Sust. throughput

TSpoon 3.57 ms 8580 el/s
Flink 0.6 ms 59609 el/s
VoltDB 4.62 ms 344 tr/s

of TSpoon, we also took advantage of the distributed deploy-
ment discussed in Section 5.1 to perform extensive system test-
ing under various operating conditions. In particular, we tested
the correctness of atomicity and isolation protocols by initiating
many read–write transactions while concurrently reading the
state with read-only transactions and checking its validity with
respect to consistency constraints and to the desired level of
isolation. During our testing, we adopted a high rate of input
elements and a low number of keys for stateful operators, to
increase the probability of conflicting accesses to state that could
reveal implementation errors. Finally, we performed the same
testing experiments in the presence of failures, by randomly
crashing operators within t-graphs. This allowed us to also test
our protocol for durability.

5.3. Default scenario

We use the default scenario described above to compare
TSpoon against Flink 1.3.2 and the VoltDB in-memory distributed
DBMS version 8.0,4 which are state-of-the-art representatives
of their categories, well known for their excellent level of per-
formance. We configure both Flink and TSpoon to deploy 50
instances of each operator — one per CPU core, a typical Flink
configuration. We set the level of isolation for TSpoon to PL3
(the same adopted by VoltDB) and we use TB concurrency con-
trol. VoltDB only enables developers to configure the number of
database partitions per machine. We configure 2 partitions per
machine, for a total of 40 partitions, since 15 out of 20 nodes
in the cluster have 2 CPU cores, and we do not want to over-
commit the available resources. We implement the bank transfer
transaction as a stored procedure that is analyzed and compiled
at deployment time to eliminate the overhead of creating a query
plan at runtime. We compute the throughput and latency of
VoltDB using the provided benchmarking tools.5 They measure
the maximum throughput by submitting 200k bank transfer
transactions in a single burst, and then computing the average
latency with an input rate that is below the maximum through-
put. The comparison is fair, since the maximum throughput is an
over-estimation of the sustainable throughput.
Table 1 shows the results we measured. TSpoon achieves a

sustainable throughput of more than 8500 input elements/s with
3.57 ms latency. By comparison Flink processes 59609 input
elements/s with an average latency of 0.6 ms. However, the
application implemented in Flink differs from that implemented
by TSpoon and VoltDB as Flink does not provide any trans-
actional guarantee and the results it produces can violate the
requirements of our bank transfer scenario. In practice, these tests
measure the overhead of TSpoon in enforcing transactional guar-
antees. Flink can process deposits and withdrawals in parallel, in
any order, while TSpoon introduces concurrency constraints to
enforce isolation and atomicity.
As a more fair comparison, VoltDB offers the same transac-

tional guarantees of TSpoon, but achieves a throughput of only
344 transactions/s with a latency of 4.62 ms. Indeed, VoltDB is
optimized for transactions that involve a single partition and

4 https://github.com/voltdb/voltdb.
5 https://github.com/VoltDB/voltdb/blob/master/examples/voter/README.md.

https://github.com/voltdb/voltdb
https://github.com/VoltDB/voltdb/blob/master/examples/voter/README.md
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Fig. 6. VoltDB: throughput and latency when increasing the percentage of single-partition transactions.

this result indicates that multi-partition transactions are very
expensive. We repeated the same experiment by submitting an
increasing percentage of single-partition transactions (individual
bank deposits and withdrawals). As Fig. 6 shows, we observed an
increasing throughput and decreasing latency, up to more than
73k transactions/s and a latency of 0.05 ms when considering
only single-partition transactions. In contrast, TSpoon delivers
consistent performance independently on the type of transac-
tions. We plan to implement optimizations for single-partition
transactions inspired by VoltDB as future work.
In summary, the above results demonstrate that TSpoon is

competitive with state-of-the-art data processing and manage-
ment systems: it provides the same performance as Flink in
pure stream processing tasks, reduces the throughput by less
than 7× when providing strong (PL3) transactional guarantees,
and significantly outperforms VoltDB in terms of multi-partition
transactional updates.

5.4. Isolation levels and concurrency control strategies

Fig. 7 shows the performance of TSpoon in our default scenario
with different isolation levels (PL2, PL3, PL4) and concurrency
control strategies (LB and TB). Moving from PL2 to PL3 does
not introduce a significant drop in throughput (Fig. 7a) or latency
(Fig. 7b). Indeed, our default scenario includes a large number of
bank accounts that lead to minimal state access conflicts. At level
PL3, LB and TB protocols exhibit comparable behaviors, with a
small advantage of TB in terms of throughput. PL4 is clearly more
expensive, leading to a throughput of about 2280 elements/s
for LB and about 3100 elements/s for TB. Indeed, the strong
requirement of processing transactions in id order demands for
a single-instance operator that enforces this order. LB imposes
the order upfront, while TB checks the order before transactions
complete, aborting and rescheduling those transactions that vio-
late it. In our default scenario, the first strategy is more expensive
and leads to an increase in latency (up to 7.5 ms).

5.5. Sensitivity to parameters

We now investigate howworkload parameters influence TSpoon.

5.5.1. Chain of updates
We first consider a chain of updates performed one after the

other, mimicking a scenario where the data produced by a state
update is elaborated downstream and produces updates in other
operators. We consider both the case in which all the involved
stateful operators belong to the same t-graph and the case in
which each stateful operator belongs to a different t-graph. Each
stateful operator includes 100k different keys, as in our default
scenario. Fig. 8 shows that the throughput decreases with the

number of stateful operators, both in the case of a single t-
graph and in the case of multiple t-graphs. In the case of a
single t-graph (Fig. 8a), the elements of a transaction traverse
the entire pipeline of operators before the transaction complete.
The longer the pipeline, the higher the probability of conflicts
between transactions. This problem does not occur in the case of
different t-graphs (Fig. 8b), which instead introduce the overhead
of opening and closing multiple transactions. The throughput is
higher in the case of a single t-graph, meaning that opening and
closing multiple t-graphs are more expensive than processing a
single, longer transaction.
In the case of a single t-graph, the latency only slightly in-

creases when moving from one to eight stateful operators due
to the longer path from sources to sinks, and remains below
30 ms for all the configurations we tested (Fig. 8c). In the case of
multiple t-graphs, the latency increases more (up to almost 80 ms
in the case of PL4 with TB protocol), due to the presence of an
additional open and close operators for each t-graph.

5.5.2. Parallel updates
Fig. 9 shows the performance of TSpoon when considering

state updates that occur in parallel, in a single t-graph or in
distinct t-graphs. In the case of a single t-graph (Fig. 9a), the
throughput decreases with the number of stateful operators.
Indeed, a higher number of stateful operators increases the prob-
ability of state access conflicts and also forces the close op-
erator to wait for more outcomes. For protocols up to PL3, the
throughput decreases from about 8000 elements/s to less than
2500 elements/s. The overhead of PL4 protocols dominates the
costs associated to the increased number of stateful operators,
leading to the same throughput from one to eight stateful oper-
ators. In the case of multiple t-graphs (Fig. 9b), the throughput
remains almost constant, since TSpoon can process transactions
entirely in parallel. The latency, not reported for space reasons,
also remains almost constant in all the scenarios we tested.

5.5.3. Number of keys
We now study how the probability of state access conflicts

between transactions influences the performance of TSpoon. We
consider again our default scenario and we change the number
of keys (bank accounts) within the account balance operator.
As Fig. 10 shows, LB tolerates access conflicts better, and its
throughput does not significantly decrease even in the extreme
case of only 100 keys. Instead, TB is more affected. The through-
put decreases when reducing the number of keys for all isolation
levels. In the case of PL2, the throughput remains stable from
10k to 1000 keys, and decreases with fewer keys from 8900 to
less than 6200 elements/s. State access conflicts influence PL3
and PL4 the most, since these two levels of isolation introduce
more constraints and increase the number of transactions that
have to be re-executed. In both cases, the throughput decreases
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Fig. 7. Default scenario: comparison of isolation levels and concurrency control strategies.

Fig. 8. Chained updates.

Fig. 9. Parallel updates.
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Fig. 10. Number of keys.

Fig. 11. Read queries.

Fig. 12. Processing overhead.

to less than 1000 elements/s (lower than PL4 with LB protocol).
The latency, not reported for space sake, remains almost stable
when changing the number of keys. Indeed, we measure latency
when the system is not overloaded and there are no state access
conflicts.

5.5.4. Processing overhead
We now investigate how TSpoon behaves when more expen-

sive computations take place within a t-graph. We expect most
application scenarios to include only simple state updates in t-
graphs, leaving outside of t-graphs more complex computations
such as data analytics tasks, which do not need transactional
guarantees. Nevertheless, we are interested in seeing how robust
is TSpoon to the presence of processing overhead within t-graphs.
We set up an experiment where we artificially add processing

overhead (in the form of busy wait loops) to each stateful oper-
ator within a t-graph. We then repeat our default scenario while
increasing the processing overhead from 1 ms to 30 ms. As Fig. 12
shows, an increased processing ovehead leads to a lower sustain-
able throughput for all the protocols we tested. The decrement is

Fig. 13. Percentage of aborted transactions.

more visible for protocols up to PL3, since PL4 protocols start
from a lower throughput due to the more expensive isolation
algorithms. Nevertheless, the throughput curve flattens after a
processing overhead of 15 ms, showing that TSpoon can success-
fully commit transactions at any isolation level even when they
include some processing overhead. The latency, not reported for
space sake, increases linearly with the processing overhead, and
remains below 50 ms for all the protocols even in the presence
of a processing overhead of 30 ms.

5.5.5. Number of aborted transactions
Fig. 13 shows how the performance of TSpoon changes when

a given percentage of transactions abort due to a violation of
consistency constraints. For all the protocols we implemented,
there is no visible difference in throughput and latency when
increasing the percentage of aborted transactions. Indeed, the
behavior of the protocols does not depend on the outcome of
transactions. This is different with respect to transactions aborted
due to state access conflicts and rescheduled for execution, which
have been discussed in the previous section.

5.5.6. Queries
We now study the throughput for external queries. Since the

isolation level does not affect queries, we fix it to PL3. We use
our default scenario with a fixed rate of updates of 1000 bank
transfer requests/s and we change the selectivity of queries, that
is, the number of accounts that each query selects. The yellow line
in Fig. 11 shows the average number of account balance in-
stances each query accesses. The black line shows the sustainable
throughput for queries: TSpoon supports 53900 queries/s when
accessing a single instance of account balance. As the number
of involved instances increases, the throughput decreases, reach-
ing 890 queries/s in the extreme case in which a query accesses
1000 keys. Query latency, not reported for space sake, ranges
from less than 1 ms when querying a single partition to 10 ms
when querying all partitions.

5.5.7. Cost of durability
When durability is enabled, TSpoon persists the results of

completed transactions in a Write Ahead Log (WAL) on disk
before propagating them downstream. This introduces a run-
time overhead due to disk access. We measure such overhead
in our default scenario, with isolation level PL3 and LB protocol.
When the system is unloaded, writing to the WAL introduces a
negligible increase in latency. However, when the rate of input
transactions increases, the need of continuous I/O operations
influences the throughput that TSpoon can sustain, which in our
default scenario decreases from 8350 to 5448 elements/s when
durability is enabled.
Next, we measure the time to recover from a failure. Recall

that we rely on the Flink snapshot algorithm for fault-tolerance,
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Fig. 14. Number of pending transactions.

Fig. 15. Number of partitions.

which we augment with the WAL to ensure transactional se-
mantics. The time to recover includes (1) the time to discover a
failure; (2) the time to restore Flink to the last snapshot; (3) the
time to restore the state of t-graphs from the WAL. The first two
contributions only depend on Flink and its configuration. Thus,
we measure the last contribution, which is specific to our model.
Restoring the state of t-graphs involves the costs to restore: (i)
the local state of each stateful operator; (ii) the state of the open
operator. These two operations are performed in parallel, and so
the overall cost of recovery is the maximum of the two contri-
butions. Fig. 14 shows the cost of these two contributions in our
default scenario, when changing the number of elements stored
in the WAL (which depends on the input rate of transactions and
on the frequency between two snapshots). In our scenario, the
cost to restore the open operator dominates the cost to restore
each stateful operator, resulting in a recovery time of 3.5 s with
60k transactions in the WAL and 32 s with 600k transactions in
the WAL.

5.6. Scalability

Fig. 15 shows how TSpoon scales with the number of CPU
cores (and, correspondingly, the number of partitions for the
stateful operators). In our default scenario, the throughput in-
creases from 544 to 6436 elements/s (11.8×) when moving from
1 core to 16 cores. After this threshold, adding new cores brings
fewer benefits, and the throughout only increases to 8866 with
48 cores.

6. Related work

The inter-disciplinary nature of our work relates it to several
fields, including stream processing, database systems, and data
management architectures.

Processing streams of data. The last decade saw an increasing
interest in technologies to process streams of data, with several
systems being proposed by the academia and from the industry.
A first generation of SPs flourished in the mid 2000s, focusing

on the definition of abstractions to: (i) query streams of data,
as in Data Stream Management Systems (DSMSs), or (ii) detect
situations of interest from streams of low-level information, as in
Complex Event Processing (CEP) systems [17]. Initially, SPs were
developed as centralized components or libraries, despite some
early proposals to model processing tasks as a directed graph of
operators to be deployed in distributed infrastructures [2,3,21].
A second generation of SPs has its roots in the research on

Big Data, aiming to process large volumes of streaming data in
cluster environments. The research on Big Data initially focused
on static data and batch processing and proposed functional
abstractions such as MapReduce [18] to automate the distribution
of processing. Subsequent proposals increased the expressive-
ness of MapReduce, enabling the developers to specify complex
directed graphs of operators [34]. These systems assume long
running computations and provide fault-tolerance mechanisms
to resume intermediate results if they are lost due to the failure
of one or more machines in a large cluster [33]. The second
generation of SPs inherits the same processing model based on
a graph of functional operators, but focuses on dynamic rather
than static datasets. Some of them, for instance Spark Streaming
[35], provide streaming computations on top of batch processing
by splitting each stream into small static chunks (micro-batches).
Other SPs provide native support for streaming computations,
where stream elements move from an upstream operator to a
downstream operator as soon as the former has completed its
processing task. This is the case of Storm [32], Heron [23], Google
DataFlow [6], and Flink [14], which we adopt and extend in this
paper.
Related to processing dynamic data, the programming

language community proposed reactive programming (RP) ab-
stractions [8], which build on three pillars 1. time-changing
variable and explicit definition of their dependencies; 2. au-
tomated propagation of changes. RP shares many similarities
with stream processing, with the graph of dependencies between
variables being analogous to the graph of computation in SP.
Some recent proposals in the field study the trade-off between
consistency and performance in distributed RP, which is closely
related to the topic of this paper [20,25,26].

Distributed databases. Distributed relational databases provide
ACID transactional guarantees through distributed commit
protocols, concurrency control algorithms [11], and recovery
mechanisms [28]. TSpoon builds on these concepts to integrate
transactional semantics within the SP. The tension between strong
consistency and guarantees in (distributed) data management
systems has been widely investigated, leading to the formulation
of various levels of isolation [1]. Indeed, with the increasing size
of data-intensive applications [22], a number of systems trade
consistency and strong transactional semantics for scalability. To
the extreme of this approach, NoSQL databases limit or drop
transactions: Dynamo [19] was born without transactional sup-
port; MongoDB only supports transactions that involve a single
document [9], and Redis does not support arbitrary distributed
transactions [15].
More recently, NewSQL database systems aim to reconcile

strong transactional semantics and efficient distributed data man-
agement for some workloads. H-Store [31] is an in-memory
database that enforces atomicity of transactions on single par-
titions of the state through single threaded computations, and
schedules multi-site operations to ensure ACID properties. Fur-
thermore, H-Store enables transaction optimization by enhancing
the support for pre-compiled stored procedures. This approach
later evolved in the VoltDB database system that we used in our
evaluation [24]. S-Store defines stream processing capabilities on
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top of an OLTP system (H-Store), implementing streams as time-
varying tables and stream processing as triggers [16]. In S-Store,
a transaction is a directed acyclic graph of stored procedures
calls that can access the whole underlying database. Instead,
our approach limits the scope of individual operators to enable
intra-transactional parallelism. Actor-Oriented Database Systems
(AODB) target our same goal, and develop transactions as actor-
oriented programs [10,30]. They provide lower-level primitives
than TSpoon: parallelism is explicit and implemented by the
developers using asynchronous messages between actors.

Big data architectures. Some data processing architectures aim
to solve the dichotomy between consistent state management
and low-latency stream processing. The Lambda Architecture pro-
vides low-latency results, but serves exact yet ‘‘old’’ results in case
of failures [27]. It was conceived when SPs did not provide full
support for distributed, fault-tolerant, and stateful computation
and where used as a fast speed layer that could potentially provide
wrong results in the case of failures. Thus the speed layer is
coupled with a batch layer that runs periodic batch jobs to gen-
erate higher-latency but exact results. When the data is queried,
the serving layer encapsulates the complex logic that integrates
the results of the speed layer (recent, but possibly inaccurate) or
those of the batch layer (accurate, but possibly outdated). More
recent proposals criticize the complexity of this architecture and
advocate stream-only solutions.6 To enable these architectures,
some SPs introduce the concept of queryable state [12], although
focusing on individual operators without providing transactional
guarantees as we do. Our proposal can be considered as an
evolution of these architectures that moves transactional updates
directly on the SP.

7. Conclusions

Data-intensive applications increasingly often combine consis-
tent data management with analytics on large volumes of dy-
namic (streaming) data. Current architectures satisfy these needs
by exploiting multiple subsystems, but this leaves developers
with the daunting task of coherently integrating these subsys-
tems. We propose a novel model that seamlessly integrates trans-
actional state management within a distributed stream processor.
The model introduces transactional regions within dataflow com-
putation graphs: each element entering a transactional region
initiates a read–write transaction, and the internal state of the
region can be queried with read-only transactions. We implement
the model in the TSpoon system, which offers different levels of
isolation and durability to let developers choose the best trade-off
between performance and consistency for the application at hand.
We evaluate TSpoon thoroughly measuring its performance under
different workloads, transactional semantics, and implementation
strategies, and showing that it can outperform state-of-the-art
data management tools in common scenarios. We are confident
that this work has the potential to open a new line of research
and innovation, and lead to architectures that are more efficient
and easier to design, develop, and maintain.
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