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Abstract—Distributed data processing platforms aim to pro-
vide a balance between ease of use and performance. The question
is: do they succeed? Systems like Apache Spark or Apache Flink
offer a high-level programming model that results in simple and
concise definition of the processing tasks, abstracting away most
of the concerns associated to concurrency and distribution but
at the cost of a large performance gap with custom programs
that use low-level primitives to control distribution and resource
usage. May we fill this gap? May alternative design choices yield
better performance without sacrificing simplicity?

This paper answers the above questions by introducing
RStream, a novel data processing platform written in Rust.
RStream provides a high-level programming model similar to
that of mainstream data processing systems, which supports
batch and stream processing, data transformations, grouping,
aggregation, iterative computations, and time-based analytics,
incurring in a much lower overhead, closer to that of custom,
low-level code. In numerical terms, our evaluation shows that
RStream programs present nearly identical complexity as similar
programs written in Flink, delivering from 2× to 20× the
throughput of Flink, rivaling custom MPI implementations.

Index Terms—batch processing, stream processing, dataflow

I. INTRODUCTION

As data guides the decision making process of increasingly
many activities, analytics over static (batch) and dynamic
(streaming) data becomes a core component in the software
stack of many companies. The tension between simplicity in
the definition of the processing tasks, and efficiency and scal-
ability of their execution, guided the advent of a programming
model that promotes distributed processing while hiding most
of the burdens it brings. Introduced with MapReduce [1], this
model expresses jobs as directed graphs of operators, each
applying a functional transformation on the input data and
feeding downstream operators with its output. This dataflow
approach offers task parallelism by enabling different opera-
tors to run simultaneously on the same or different machines.
It also offers data parallelism by launching parallel instances
of operators, each one working on an independent partition of
the input data. The resulting job definitions are very concise:
developers focus on the behavior of operators and how the

input data is partitioned among parallel instances, while the
runtime automates deployment, scheduling, synchronization,
and communication. Over the years, various systems perfected
the model, for instance introducing iterative computations and
better exploiting memory management [2]. Remarkably, they
proved the programming model capable of unifying batch and
stream processing under a common abstraction [3], [4], [5].

Despite these significant achievements, current state-of-
the-art data processing systems cannot provide a level of
performance that is comparable to custom programs optimized
for the specific problem at hand. As recognized in recent
literature [6], [7], custom implementations using low-level
programming primitives, such as MPI, can yield more than
one order of magnitude performance improvements. But this
comes with a much higher difficulty in software validation,
debugging, and maintenance, as programmers are exposed to
concerns related to memory management, data serialization,
communication, and synchronization.

This state of things leads to the research questions we ad-
dress in this paper. Is the existing performance gap with custom
low-level code only the inevitable result of the programming
model employed by modern data processing systems? Or do
other design choices play a role?

We answer these questions by presenting RStream, a
lightweight distributed data processing platform. RStream pro-
vides a unifying model for batch and stream processing, with
primitives for data transformation, partitioning, aggregation,
and support for iterative computation. This model is similar
to that provided by state-of-the-art distributed processing sys-
tems. In fact, a direct comparison with programs written for
Flink [5] or Spark [2] shows nearly identical complexity. At
the same time, RStream delivers performance closer to custom
MPI implementations. In our experiments we measured from
2× to 20× higher throughput than Flink.

This better compromise between performance and ease-of-
use is the result of various design choices. First, RStream
abandons the JVM-based languages, typically adopted by
mainstream competitors, in favor of Rust [8], a compiled
programming language that offers high-level abstractions at
virtually no cost, with a trait system that statically generates978-1-6654-3902-2/21/$31.00 ©2021 IEEE



custom versions of each abstraction for different data types
and avoids dynamic dispatching. Second, RStream adopts a
lightweight approach to resource management, which lever-
ages the services offered by the operating system as much
as possible. For example, RStream co-locates operators that
perform different steps of a processing job on the same
machines, letting them compete for CPU time, based on
their dynamic requirements, while it leverages the mechanisms
embedded into TCP to implement backpressure.

The paper is organized as follows. Section II provides
background on distributed data processing systems and Rust.
Section III and Section IV present the programming model
and the design of RStream, and Section V evaluates its
performance and scalability, comparing them with Flink and
custom MPI programs. Section VI discusses related work and
Section VII draws conclusive remarks.

II. BACKGROUND

This section presents the programming model of distributed
data processing platforms and the key features of Rust that
RStream exploits to attain simplicity and efficiency.

A. Distributed data processing

Modern platforms for distributed data processing rely on
a dataflow programming model first introduced by Google’s
MapReduce [1]. Computation is organized into a directed
graph of operators, whose edges represent the flow of data
from operator to operator. Since operators do not share any
state, the model promotes distribution and parallelism by
deploying operators in multiple instances, each processing an
independent partition of the input data and running in parallel
with the others, on the same or on different machines.

The famous example used to illustrate the model is “word
count”, a program to count the number of occurrences of each
word in a large set of documents. It can be expressed using
two operators, the first operates in parallel on various partitions
of the input documents splitting them in words and emitting
partial counts for each word. These partial results are then
regrouped by word and passed to the second operator that sums
the occurrences of each word. Developers need only to express
how to operate on an individual document (first operator)
and how to integrate partial results for each word (second
operator). The runtime takes care of operator deployment,
synchronization, scheduling, and data communication: the
most complex and critical aspects in distributed applications.

The dataflow model accommodates stream processing com-
putations with only minor adjustments. Due to the unbounded
nature of streams, developers need to specify when certain
computations are triggered and what is their scope, which is
typically expressed using windows. For instance, developers
could implement a streaming word count computation over a
window of one hour that advances every ten minutes, meaning
that the count occurs every ten minutes and considers only
documents produced in the last hour.

Data processing systems implemented the dataflow model
using two orthogonal execution strategies. Systems such as

Hadoop [9] and Apache Spark [2] dynamically schedule op-
erator instances over the nodes of the compute infrastructure.
Communication between operators occurs by saving interme-
diate results on some shared storage, with operators deployed
as close as possible to the input data they consume. Other
systems such as Apache Flink [5], and Google Dataflow [4]
deploy all operators instances before starting the computation.
Communication takes place as message passing among in-
stances. RStream adopts the second strategy, which enables
lower latency for streaming computations, as it does not incur
the overhead of operator scheduling at runtime.

B. Rust

RStream heavily relies on some key features of the Rust
programming language to offer a high-level API with limited
performance overhead.

1) Generics and static dispatch: In Rust, developers can
express data structures and functions that are generic over
one or more types. For instance, all RStream operators con-
sume and produce a generic Stream<T>, which represents
a bounded or unbounded dataset of a generic type T. This
high-level construct is implemented at virtually no cost by
Rust, which adopts static dispatching. The compiler generates
a separate version of each generic structure or function for
each different way in which it is instantiated in the program,
while invocations to generic functions are translated into direct
calls to the correct version [10].

2) Memory management: Rust provides automatic and safe
deallocation of memory without the overhead of garbage
collection. It achieves this goal through an ownership and
borrowing model [11], which certainly represents Rust’s most
distinctive feature. In Rust, every value has an owning scope
(for instance, a function), and passing or returning a value
transfers its ownership to a new scope. When a scope ends,
all its owned values are automatically destroyed. A scope can
lend out a value to the functions it calls: the Rust compiler
checks that a lease does not outlive the borrowed object.
All together, this model allows Rust to fully check safety of
memory accesses at compile time, also avoiding the need for
(costly) runtime garbage collection.

3) Iterators and closures: The iterator pattern is heavily
used in idiomatic Rust code and enables chaining operations
over a collection of items without manually implementing the
logic to traverse the collection. Operations are implemented
as iterator adapters that take in input an iterator and produce
a new iterator. Rust provides closures, which are anonymous
functions that can capture the enclosing environment. Iterator
adapters are often higher-order functions that accept closures
defining their behavior as parameters. The iterator pattern
strongly resembles the dataflow model discussed above. For
this reason, we used iterators as the blueprint for RStream’s
model and implementation, making its API intuitive both for
Rust developers and for users of data processing platforms.

4) Traits and serialization: Traits represent a collection of
functionalities (methods) that any data type implementing that
trait should offer. Traits are widely used in Rust to bound



generics, for instance to restrict the use of a generic function
only to parameters that implement certain traits. RStream
leverages traits to transparently implement parameter passing
among distributed instances of operators. More specifically,
RStream requires all data types to implement the Serialize
and Deserialize traits.

III. PROGRAMMING INTERFACE

RStream offers a high-level programming interface that
hides most of the complexities related to data distribution,
communication, serialization, and synchronization.

A. Streams

Streams are the core programming abstraction of RStream.
A generic Stream<T> represents a dataset of elements
of type T, which can be of any type that implements the
Serialize and Deserialize traits. Since these traits
can be automatically derived at compile time by the Serde
library [12], developers can use their custom data types with-
out manually implementing the serialization logic. Streams
model both static (bounded) datasets (e.g., a file) and dynamic
(unbounded) datasets, where new elements get continuously
appended (e.g., a TCP link). Streams are created by sources,
processed by operators that produce output streams from input
streams by applying functional transformations, and collected
by sinks. Finally, Streams can be partitioned, enabling those
partitions to be processed in parallel.

1) Creating and consuming streams: Streams are built from
a source of data elements. RStream provides two methods to
build a source. The Stream::new method takes an iterator
and creates a source that produces all elements returned by
the iterator: in the example below, all integers from 0 to 100.

let stream1 = Stream::new(0..100);

Similarly, the Stream::new_parallel method creates
a source that consists of multiple instances producing elements
in parallel. It takes a closure with two input parameters: r is
the rank of the current source instance, while size is the total
number of instances to create. The rank is an integer identifier
assigned to each instance, going from 0 to size-1. The
closure must return an iterator for each rank, to be associated
with the corresponding instance. In the example below, each
instance produces 10 integers, the first one starting from 0, the
second one starting from 10, and so on. Source instances will
be deployed on different processes (see Section IV).

let stream2 = Stream::new_parallel(|r, size| {
let iter = (10*r)..(10*(r+1));
Box::new(iter) });

The use of iterators is widespread in Rust libraries, for
instance it is used by the Apache Kafka API for Rust, easing
the job of RStream programmers.

Job execution starts when a sink consumes a stream. For
instance, the two sources above would not produce any ele-
ment until a sink demands so. RStream provides four sinks:
for_each and parallel_for_each apply a function to
each and every element in the stream, either sequentially or

in parallel (in multiple processes), collect_vec gathers all
elements in a vector, reduce applies a global reduction over
all elements of the stream. For example, the following code
snippet prints all elements in the stream:

Stream::new(0..100).for_each(|i:u32| {
println!("{}",i); });

Likewise, the code snippet below sums all elements in the
stream, resulting in a single number.

Stream::new(0..100).reduce(|i: u32,j: u32| i + j);

2) Transforming streams with operators: Operators trans-
form a stream into a new stream. Developers encode oper-
ators’ behavior in closures. Examples of operators are map,
flat_map, and filter. A map transforms each element
of the input stream into one element of the output stream. For
instance, the following code snippet transforms a stream of
integers doubling each element to produce the output stream.

stream.map(|i: u32| i * 2);

A flat_map operator is similar to a map, but can generate
zero, one, or more elements in the output stream for each
element in the input stream. For instance, for each integer i
in the input stream, the following code outputs three integers:
i, i multiplied by 2, and i multiplied by 3. The developer
packs the output elements produced when processing an input
element into a vector and RStream automatically integrates all
results into the output stream.

stream.flat_map(|i: u32| vec![i, i * 2, i * 3]);

A filter operator takes a predicate and retains only the
input elements that satisfy it. For instance, the code snippet
below retains only the even numbers from the input stream.
stream.filter(|i: u32| v % 2 == 0);

3) Partitioning and parallelism: RStream assumes that
operators process each element in their input stream indepen-
dently from the others. Under this assumption, stream elements
can be processed in parallel by different operator instances
that are executed, at runtime, by separate processes, possibly
launched on different machines (see Section IV).

However, in some cases developers may want to retain
some common state for a group of elements in a stream, for
instance to count the number of elements in each group. To
support these scenarios, RStream allows developers to explic-
itly control stream partitioning with two operators: key_by
and group_by. Both take in input a closure that computes a
key for each element in the stream and repartition the stream
to guarantee that all elements having the same key will belong
to the same partition. This way, developers can retain the
state associated to a given key in a single operator instance,
with the guarantee that this instance will receive all elements
with that key. Keys can be of any type that implements the
Hash and Eq traits. The two operators differ in that key_by
admits any downstream operator, whereas group_by allows
only aggregation operators (e.g., reduce) that will work
independently on each key. For instance, the code below



organizes an input stream of integers in two groups, even and
odd, by associating each element with a key that is 0 for even
numbers and 1 for odd numbers. Then, it sums all elements
in each group. The result will be a stream of two elements,
representing the sum of all even and all odd numbers in the
original stream.

stream.group_by(|i: u32| i % 2).reduce(|x, y| x + y);

Even though RStream shares with data processing platforms
the philosophy of hiding the details about concrete deployment
and execution as much as possible, it also provides few
constructs to control parallelism. The max_parallelism
operator sets the maximum number of partitions allowed for
the output stream. The shuffle operator evenly redistributes
elements across partitions: for instance, after a key_by and
a chain of transformations partitioned by key, it might be
beneficial to reshuffle data when subsequent operators do not
need to preserve key partitioning anymore.

B. Iterations

Several algorithms for data analytics are iterative in nature.
For instance, many machine learning algorithms iteratively
refine a solution until certain quality criteria are met. RStream
supports iterative computations with two operators.

The iterate operator repeats a chain of operators until
a terminating condition is met or a maximum number of
iterations is reached. In the first iteration, the chain consumes
elements from the input stream, while at each subsequent
iteration, the chain operates on the results of the previous iter-
ation. The iterate operator accepts three input parameters:
a closure to reduce all elements in the dataset, a closure that
evaluates the result of the reduction and returns a Boolean
to indicate if a new iteration is needed, and the maximum
number of iterations. For instance, the following code snippet
repeats the map operator until the sum of all the elements in
the stream overcomes 1000 or after 10 iterations.

stream.map(|i| i + 1).iterate(
|x: i32, y: i32| x + y), // Reduce
|ris| ris > 1000, // Stopping criterion
10); // Max num of iterations

The cycle operator supports algorithms that need to
iteratively update some mutable state. As the iterate oper-
ator, cycle repeats a chain of operators until a terminating
conditions is met. However, each iteration receives the same
input stream and the current value of a state variable. At the
end of each iteration, cycle updates the value of the state
variable: this update is performed on a single instance, which
broadcasts the new value before starting a new iteration. The
following snippet exemplifies the use of the operator.

let state = State::from(0u32); // Initialize state
Stream::new_cycle(

source, // Source: any iterator
state.clone(), // State
0 // Maximum number of iterations

).map(|i| { // Any chain of operators
println!("Current state: {}", state.borrow());
i // Only prints the current state

}).cycle(
|s: &mut u32, d: u32| {

*s += d; // Update state s with element d
},
|s: &mut u32| *s < 20); // Stopping criterion

The State::from function initializes the state variable.
In this case, the state is a single unsigned integer, but any
serializable data structure can be used. The cycle starts with the
new_cycle that takes in input the source of elements, a copy
of the state, and the maximum number of iterations, where 0
indicates no threshold. The operators in the cycle (only map
in the example) can read the current value of the state by
borrowing it. At the end of each iteration, the cycle operator
updates the state using the first closure (in the example, it adds
all elements to the state) and restarts the iteration if the second
closure returns true (in the example, if the state is smaller
than 20). In the two closures, state is a (mutable) reference,
so developers need to use a dereference * operator.

C. Windows and time

Windows identify finite portions of unbounded datasets [13].
As common in stream processing systems [14], RStream de-
fines windows with two parameters: size determines how many
elements they include and slide determines how frequently
they are evaluated. RStream offers both count windows, where
size and slide are expressed in terms of number of elements,
and time windows, where size and slide are expressed in terms
of time. Windows take in input a closure that specifies how
to reduce the content of a window to a single element. For
instance, the code below uses a count window to compute,
every 2 elements, the sum of the last 5 elements received.

stream.sliding_count_reduce(
|x, y| x + y, // Reduce closure
5, 2); // Size and slide

If a window operator is applied after a group_by operator,
a separate window is considered for each group. For instance,
the code below applies one window to the group of even
numbers and one to the group of odd numbers. The example
uses time windows that are evaluated every 20ms over all the
elements received for that group in the last 100ms.

stream.group_by(|v| v % 2).sliding_p_time_reduce(
|x, y| x + y, // Reduce closure
Duration::from_millis(100), // Size
Duration::from_millis(20)); // Slide

When dealing with time windows, RStream supports two
definitions of time: processing and event time. Processing time
is the wall clock time of the machine computing the window.
For instance, when executing the code snippet above, the
process responsible for the group of even numbers computes
the sum of elements received in the last 100ms according to
the clock of the machine hosting that process. However, many
scenarios need to decouple application time from execution
time [4] to guarantee consistent results even in the case of
delays or when processing historical data. To handle these
cases, RStream supports event time semantics, where sources
associate a logical timestamp to each element. Specifically,
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Fig. 1: Deployment of the word count job.

the sliding_e_time_reduce has the same syntax and
behavior as the sliding_p_time_reduce, but uses the
timestamps inside elements to measure time progress.

IV. DESIGN AND IMPLEMENTATION CHOICES

RStream is implemented as a Rust framework that offers the
API discussed in Section III. To run a data processing job on a
set of hosts, developers: (i) write a Rust program that defines
the job using RStream API; (ii) compile the program and
copy the executable on all hosts; (iii) provide a configuration
file that specifies the list of hosts and their computational
resources (number of cores); (iv) start the computation using
the streamrunner command-line tool.

The streamrunner tool uses ssh to connect to each
host, spawns compute processes that connect to each other,
and starts the computation. This workflow is inspired by MPI,
the standard for compute-intensive tasks [15].

A. Operators deployment

Starting from a job definition, RStream creates and launches
a set of processes, each executing a portion of the computation.
We illustrate the translation from a job to a set of executing
processes with the classic word count example. The following
code snippet shows its implementation in RStream.

Stream::from_readlines(&file_path)
.flat_map(|line| tokenizer.tokenize(line))
.group_by(|(w, _c)| w.clone())
.reduce(|(w1, c1), (_w2, c2)| (w1, c1 + c2))
.collect_vec();

The from_readlines helper function instantiates a
new source reads a file and produces a dataset of lines;
flat_map extracts pairs of words with their associated
counts; group_by and reduce group the pairs by word and
reduce each group by summing all counts; collect_vec
gathers the final results into a vector. The translation from a
high-level job to a set of executing processes takes place in
two steps, as exemplified in Fig. 1.

1) Logical plan: RStream first defines a logical plan by
splitting the job into stages. A stage consists of a sequence
of operators that do not alter data partitioning. Data parti-
tioning changes when data is regrouped or reshuffled using
the key_by, group_by, and shuffle operators, and when
using operators that impose a single partition, such as single
sources and sinks. For instance, the job in Fig. 1 consists of

four stages: stage 0 contains the source, stage 1 contains the
flat_map and group_by operators. Since the group_by
operators changes the way in which data is partitioned, the
subsequent reduce operator is associated to a new stage 2.
Finally, the sink collect_vec defines stage 3.

2) Physical plan: Stages define the boundaries of task
parallelism. Operators part of the same stage are chained
together, each consuming exactly the same data produced by
the previous one, such that it is not worth processing them in
parallel: they represent an unbreakable sequence of operations.
Conversely, from a stage to the next one, data can be reshuffled
and potentially reordered, such that running stages in parallel
may improve throughput. The benefits of task parallelism
become more evident when we add data parallelism to the
picture: elements flowing from a stage to the next one can
be partitioned to run multiple instances of the same stage in
parallel, one per partition.

When translating the logical plan into a physical plan,
RStream instantiates at least one process for each stage (task
parallelism). When multiple processes are instantiated for a
single stage, they work in parallel on different partitions of the
input stream (data parallelism). The number of processes (and
consequently the number of partitions) per stage is defined in
a configuration file read by the streamrunner tool before
deploying and executing a job. For instance, in Fig. 1 a single
process P0 implements the source, three processes P1, P2,
and P3, implement stage 1, working in parallel on different
partitions of the input stream. The same happens for stage 2,
run by processes P4, P5, and P6. Finally, a single process P7
collects the results in stage 3.

3) Deployment and resource allocation: While developers
are free to choose the number of processes running each stage
based on the computing resources available, our experiments
show that RStream delivers the best performance when we
instantiate one process per stage per available CPU core.
This approach integrates well with a key design decision
we adopt in RStream: we use processes to provide task and
data parallelism and we fully delegate the scheduling of such
processes to the operating system, alleviating the application
layer from such system-level concerns.

Since stages might have heterogeneous computational de-
mands, reserving a CPU core to each stage might result
in under-utilizing the CPU core associated to light stages.
Similarly, reserving a CPU core to a single partition would
be sub-optimal when the computational demands of different
partitions are not evenly distributed. By running one partition
of each stage per CPU core we avoid both situations, giving the
operating system full freedom to schedule execution of stages
and their partitions at the cost of a relatively large number of
processes to be managed, a cost that proved to be minimal
for the scheduler of current operating systems. Other stream
processing platforms such as Flink and Kafka Streams allocate
an equivalent number of parallel tasks but as threads running
within JVMs, increasing the architectural layers.
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B. Communication

In RStream, processes communicate using direct TCP chan-
nels. Since stages are separated by reshuffling boundaries,
process P running stage S receives data from every process
running the upstream stage and delivers data to every process
running the downstream stage. For instance, process P1 in
Fig. 1 received data from process P0 using a single TCP
channel and delivers data to processes P4, P5, and P6 using
three TCP channels.

1) Communication layer: We paid great attention to the
design and implementation of the communication layer of
RStream, leading to the solution illustrated in Fig. 2. We
initially used MPI point-to-point primitives [15], but they
employ a polling mechanism to receive data that is not suitable
to overlap computation and communication. Similarly, using
a separate thread for each input and output channel may lead
to an excessive number of threads that compete for resources
with the compute task. To avoid these problems, we implement
RStream communication layer using the Tokio library [16] that
provides cooperative task scheduling. We allocate a Tokio task
for each input and output channel and let Tokio run all these
tasks cooperatively. When a task is blocked waiting for an I/O
operation to complete, it yields to the Tokio scheduler that
resumes another task ready for execution.

Fig. 2 exemplifies the architecture of the communication
layer for a process with four input channels, handled by
tasks in0, in1, in2 in3, and two output channels, handled
by tasks out0 and out1. The communication layer inter-
acts with the processing layer that implements the operator
logic and handles data serialization and deserialization in
an additional Tokio task. We use binary serialization using
bincode [17]: the communication layer delivers binary data
to the processing layer through a multiple-producers-single-
consumer channel, and receives binary data through a single-
producer-multiple-consumers channel.

2) Buffering: RStream supports buffering of messages
(similar to Kafka micro batches) to reduce communication
overhead. Buffering is implemented in the processing layer,
where outgoing messages are stored into one output queue
for each outgoing channel before serialization (see Fig. 2).
We support two policies: fixed and adaptive. Fixed buffering
waits for a fixed number of outgoing messages for a given
channel before serializing and sending them. As fixed buffer-
ing may increase latency by waiting until the desired number
of messages is available, adaptive buffering flushes an output

queue when a timeout elapses.
3) Timestamped streams and watermarks: When using

event time, sources associate a timestamp metadata to each
element in the stream they generate, and the runtime needs
to preserve timestamp order during processing. However, in
the presence of data parallelism, each partition in a stage
simultaneously receives data from all the partitions in the pre-
vious stage, which does not guarantee that timestamp order is
preserved. We solve this problem with a standard mechanism
in stream processing platforms: watermarks[5]. Watermarks
are special elements periodically emitted by sources that
contain a single timestamp T indicating that no elements with
timestamp lower than T will be produced in the future. Under
event time semantics, processes buffer data before processing.
When a process p in a stage s receives a watermark greater
than T from all incoming channels, it can be sure that it will
not receive any more data with timestamp lower than or equal
to T . At that point, it processes all elements up to timestamp
T from the buffer, and propagates a watermark T downstream.

V. EVALUATION

Our evaluation has two goals: (1) determine if and to what
extent RStream delivers better performance than today’s data
analytics platforms and closes the gap with custom low-level
programs; (2) verify that improved performance does not come
with increased program complexity.

To achieve these goals, we implement the benchmarks
described in Section V-A in RStream, C++/MPI, and Apache
Flink. C++/MPI sets the level of performance achievable
with ad-hoc optimized implementations. Flink represents the
state-of-the-art in data processing platforms, with comparable
or better performance and scalability than competing solu-
tions [18]. We compare the implementations in terms of code
complexity (Section V-C), absolute performance and scala-
bility (Section V-D). Whenever suitable, we explore different
workload characteristics and configuration parameters to shed
light on the key aspects that contribute to the performance of
RStream.

A. Benchmarks

Our suite of benchmarks covers batch and stream processing
scenarios, including iterative computations.
Word count (wc) counts the number of occurrences of each
word in a plain text file. We use an input file of 4 GB generated
from the project Gutenberg dataset of books [19].
Vehicle collisions (coll) performs three queries over a public
dataset of vehicle collisions [20]. The dataset consists of a
CSV file with about one million collision entries occurring in
five years. The queries compute: (1) the number of lethal ac-
cidents per week; (2) the number of accidents and percentage
of lethal accidents per contributing factor; (3) the number of
accidents and average number of lethal accidents per week per
borough.
K-means (k-means) is an iterative clustering algorithm that
divides a dataset of points into k non-overlapping groups (clus-
ters), aiming to maximize the distances between the centers of



Benchmark RStream Flink C++/MPI Rust
wc 35 38 160 30
coll 129 148 650 147
k-means 157 184 316 138
win-wc 39 47 216 81

TABLE I: Lines of code used to implement each benchmark.

each cluster (centroid). We randomly generate datasets with up
to 10 million bi-dimensional points (200 MB of input data).
Windowed word count (win-wc) performs the word count
computation over a sliding window rather than on the entire
dataset. Computing aggregations over windows is a typical
stream processing task.

B. Experiment setup

Unless otherwise specified, we run the experiments on
an AWS cluster composed of c5.2xlarge instances, equipped
with 4-cores/8-threads processors and 16 GB of RAM each,
running Ubuntu server 20.04, residing in the us-east-2 zone,
and communicating through the internal AWS network with an
average ping time of 0.1 ms. RStream jobs are compiled with
rustc 1.47.0 in release mode with all the optimizations active.
We use Flink 1.11.2 executed on the OpenJDK 14.0.2, with
12 GB of RAM allocated to TaskManagers. As RStream does
not currently implement fault-tolerance mechanisms, to offer a
fair comparison we disabled them also in Flink: in particular,
we configured Flink to save state as Java objects in memory
and to never checkpoint state to durable storage. We compile
C++/MPI programs with gcc 9.3.0 using OpenMPI 4.0.3 and
OpenMP 4.5 and maximum optimization level. For both batch
and stream processing tasks, we use a finite input dataset
and we measure the overall processing time. When measuring
latency, we use a single source and a single sink, deployed on
the same host, and we use its local clock to compute latency.
We run each experiment 6 times and compute the average
value, discarding the results of the first execution to let the
kernel load the dataset in the Page Cache memory.

C. Programming model

Evaluating code complexity is hard and subjective. We
approach the matter by (1) counting the lines of code required
to implement the benchmarks in the systems under analysis
(Table I); (2) highlighting the main differences in the im-
plementations that contribute to the count. Since the use of
different programming languages affects code verbosity, we
also report the lines of code of a sequential implementation
of the benchmarks in Rust.

Comparing RStream and Flink, we observe a similar number
of lines in all benchmarks. The slightly higher number of
lines for Flink are mainly due to the Java language and the
need to define custom sub-classes to encode the behavior of
some Flink operators. In summary, RStream and Flink present
similar programming models and very similar complexity. In-
terestingly, in iterative algorithms (k-means), we observe that
RStream better hides distribution concerns in handling mutable
state across iterations: while Flink requires a special construct
(i.e., broadcast variables), RStream can use a standard Rust
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Fig. 3: wc: execution time and scalability.

closure, with the enclosed variable being a copy of the state
at the current iteration in each process.

RStream implementations also present a level of complexity
close to sequential Rust. Indeed, the use of a data abstraction
that closely resembles iterators makes RStream programs ap-
pear like paradigmatic Rust code for processing collections. In
win-wc, the sequential Rust implementation is complicated
by the need of implementing by hand the windowing logic
that RStream provides in its API.

In comparison, C++/MPI requires much more coding effort.
This reflects in a higher number of lines of code: 2× more
in k-means, 4× more in wc and 5× more in coll and
win-wc. Most significantly, the additional lines of code
reflect the necessity to handle low-level concerns that RStream
and Flink abstract away, greatly increasing implementation
complexity. First, developers need to select the data structures
that encode input data and intermediate results, and define
the serialization and deserialization format and strategy: for
instance, if and how to overlap communication, serialization,
and processing. While this offers a high degree of flexibility, it
requires fine tuning and might lead to sub-optimal choices, as
also discussed in Section V-D. Second, C++ memory model
requires considering when data structures are deallocated and
might lead to runtime errors such as memory leaks or invalid
references. The ownership model of Rust automates memory
deallocation and enables the compiler to statically check
safety, while the programming model of RStream hides man-
agement of all the data structures used for networking and I/O.
Third, MPI exposes low-level primitives for communication
and synchronization. For instance, in the case of streaming
computations, as in win-wc, developers need to manually
encode buffering strategies for inter-process communication.
Again, the increased freedom enables for fine tuning, but
can also expose to wrong communication patterns such as
deadlocks. Finally, our C++/MPI implementations combine
process-level parallelism with thread-level parallelism (using
OpenMP). This yields some additional performance improve-
ments but comes at the cost of additional code complexity.

D. Performance

We now focus on absolute performance and study the
scalability of each implementation by moving from one host
(8 virtual cores) to 4 hosts (32 virtual cores).

1) Word count (wc): Fig. 3 shows the execution time and
scalability for wc. In absolute terms, RStream completes the
task about 4.7× faster than Flink with 4 hosts, despite a similar
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Fig. 4: coll: execution time and scalability.

programming model, which shows the efficiency of its design
and implementation choices. We optimized the C++/MPI code
in many ways. In the reduction phase, RStream and Flink
partition the dataset by word and perform the reduction in
parallel, before collecting all the results in a single process and
saving the results. Given the limited size of the partial results,
in the C++/MPI implementation, we skip the intermediate
phase and collect all partial results directly in a single process,
saving one communication step. We further limit commu-
nication by using only one process per host and exploiting
thread-level parallelism inside each process, which brings an
improvement of about 8% in processing time with 4 hosts.
Despite these custom-made optimizations, C++/MPI is still
about 35% slower than RStream. A detailed analysis showed
a bottleneck when reading data from file using functions from
the standard C++ library and parsing using regular expressions
(the same we do in Flink and RStream). Thus, we implemented
an additional version with ad-hoc file reading (by mapping
the file in memory with mmap) and a simplified parser that
only considers 7bit, ASCII files instead of UTF-8 encoded
text. This version is labeled “C++/MPI opt” in Fig. 3 and
is about 4.4× faster than RStream with 4 hosts, but at the
cost of additional code complexity and reduced generality
and reusability. Some of the improvements in IO and parsing
can also be implemented in RStream, with an improvement
of more than 30% in execution time. However, we do not
consider them in the executions shown in Fig. 3 as they lead
to non-paradigmatic Rust code.

All three implementations achieve near linear scalability:
when moving from 1 to 4 hosts we measure a speedup of
3.87× for RStream, 3.83× for C++/MPI, 3.67× for Flink,
and 3.58× for the optimized version of C++/MPI. Indeed, the
most expensive operations, namely reading and parsing the
file, and performing a partial count, are executed in parallel
without synchronization across processes.

2) Vehicles collisions (coll): Fig. 4 shows the execution
time and scalability for the coll benchmark. We consider
the overall execution time to answer the three queries, which
involves starting three jobs in Flink, and reading the input
data three times in RStream and in C++/MPI. Also in this
case, RStream outperforms Flink with more than 2.3× speedup
with 32 cores and is about 30% faster than C++/MPI when
using standard IO and parsing. A C++/MPI version using
custom IO and parsing is up to 2.4× faster than RStream.
RStream and C++/MPI implementations show close-to-ideal
scalability, while Flink has a slightly lower speedup of 3.45×

when moving from 1 to 4 hosts.
3) K-means (k-means): Fig. 5 shows the execution time

and scalability for k-means, using an input dataset of
200 MB (10 million bi-dimensional points) and a fixed number
of 30 iterations. Fig. 5a shows the results for 50 centroids and
Fig. 5b shows the results for 750 centroids. A higher number of
centroids requires more computation at each iteration. RStream
achieves a level of performance that is comparable to a custom
C++/MPI implementation. Indeed, most of the execution time
is spent inside the iterations to compute the distances between
points and centroids, which reduces the benefits of optimized
input reading and (de)serialization.

With 50 centroids (Fig. 5a) the overhead of communication
at the end of each iteration limits the speedup of RStream to
2.3× when moving from 1 to 4 hosts. However, the cost of it-
erations are even more evident in Flink, and RStream achieves
20–25× better performance. With 750 centroids (Fig. 5b) each
iteration becomes computationally more expensive, reducing
the relative contribution of communication, and leading to
3.75× speedup when moving from 1 to 4 hosts. In this scenario
RStream remains up to 6× faster than Flink.

To better understand how the computational complexity
of each iteration affects performance, we repeat the same
experiment (10 million points, 30 iterations, 4 hosts) while
changing the number of centroids. Fig. 6 shows the result we
measured: the execution time from 1 to 20 centroids grows
faster in Flink than in RStream and C++/MPI. After this
threshold, the three systems exhibit a linear behavior, and the
relative advantage of RStream slowly drops from about 25× to
about 6×. C++/MPI is more efficient than RStream with very
few centroids (up to twice as fast with less than 10 centroids),
when the execution time is below 10 s. As the time spent in
the computation increases, the relative weight of custom IO
optimizations in C++/MPI decreases, and the execution time
of the two systems becomes comparable.

4) Windowed word count (win-wc): As a representative of
stream processing computations, we use win-wc over a count
window of size 10 and slide 5. The limited size of the window
forces continuous communication between the first stage that
counts words and the subsequent stage that aggregates partial
counts. Fig. 7 shows the results we measured: due to frequent
communication, RStream and C++/MPI present a higher ex-
ecution time and lower scalability than in wc. We suspect
that the computational efficiency of these two implementa-
tions makes inter-process communication and synchronization
become a bottleneck when increasing the number of processes.
This is particularly visible in the C++/MPI implementation,
that does not scale beyond 3 hosts. We experimented several
C++/MPI variants, manually implementing message batching
strategies to improve execution time. We achieved the best
performance (reported in Fig. 7) with half of the processes
reading from files and half of the processes performing win-
dowed reduction. Flink performance drops less, indicating that
reading from input and processing still represent a dominant
part of execution time. In comparison, RStream is still about
twice as fast as Flink.
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Fig. 5: k-means: execution time and scalability (10M points, 30 iter).
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Fig. 7: win-wc: execution time and scalability.

5) Scalability on a single host: As discussed in Section IV,
we aim to maximize the use of resources by instantiating
one process for each stage for each available CPU core. To
motivate this choice, we study how RStream scales on a single
host when increasing the number of processes. We perform this
experiment on a single machine equipped with a 6-core/12-
threads Intel Core i7-8700 CPU and 64 GB of RAM. Since
the goal of the experiment is to study scalability with the
number of processes, we disable Turbo Boost and lock the
CPU frequency at 3.2 GHz.

Fig. 8 shows the results we obtain with the wc and
k-means algorithms. For wc, we use a dataset of 1.2 GB.
For k-means, we use a dataset of 5 million points, 70
centroids, and 30 iterations. Both benchmarks include 2 pro-
cessing stages: with 6 processes per stage we instantiate 12
processes, the same as the number of CPU threads. Up to
this point, both benchmarks show nearly perfect scalability.
After this threshold, we observe an initial performance drop
when starting to overcommit physical resources and then the
curve flattens. In both cases, me measure the lowest execution
time with 12 processes per stage, that is, one process for each
stage for each (logical) CPU core. This shows that delegating
resource management to the operating system, which can
prioritize stages and partitions based on their computational
demands, is indeed effective.
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Fig. 8: Scalability with the number of processes.

6) Buffering and latency: Low latency is often a require-
ment in stream processing, but solutions that optimize latency
negatively affect throughput. We test the effect of buffering
strategies on execution time and latency by running a bench-
mark on 3 hosts (24 cores). The benchmark consists of a
single source that generates integer numbers and a parallel
map that simply copies input to output, toward a single sink.
By avoiding computationally-expensive operations, we better
measure the contributions of inter-process communication.

We study how buffering strategies affect throughput, mea-
sured in terms of overall execution time for a fixed input
of 4 GB. When using a fixed buffer size of 1k elements,
performance increases by more than 60× with respect to
immediately sending individual data elements. Our experience
with RStream showed us that execution time rapidly improves
when increasing the buffer size, but after a threshold the im-
provements become negligible. Although the precise threshold
depends on the specific workload and network infrastructure, a
buffer size of 1k is sufficient in all the scenarios we tested. In
fact, we used a buffer size of 1k in all experiments previously
discussed. An adaptive buffering that delivers elements to the
next stage every 50 ms even if fewer than 1k elements are
available increases execution time by less than 15%. We used
this approach for the win-wc benchmark, as it guaranteed an
upper bound for latency with limited overhead.

Fig. 9 shows the effect of the buffering strategies on latency.
We consider both a light load scenario, where the source
produces one element every millisecond, and a heavy load
scenario, where a source feeds input data at maximum rate.
Under a light load, the fixed buffering strategy accumulates
1k elements before sending them to the next stage, so the first
element in a buffer waits for about 1 second before being
delivered, while the last element in the buffer is delivered
immediately. This result in the behavior of Fig. 9a. When
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Fig. 9: Buffering strategies: effect on end-to-end latency.

applying adaptive buffering (Fig. 9b), we observe a maximum
latency close to 100 ms, as the job contains two communica-
tion steps from source to sink. Under a heavy load, the input
rate dominates and we observe similar behaviors for the fixed
strategy (Fig. 9c) and for the adaptive strategy (Fig. 9d).

These experiments confirm that an adaptive strategy can
limit latency in scenarios where some buffers might take time
to fill, with no impact under heavy load.

VI. RELATED WORK

Our work focuses on programming models and platforms
for distributed data processing. In this context, the dataflow
model we consider in this paper has attracted increasing
attention over the last several years, and many platforms have
been implemented by researchers and practitioners [21], [22],
[4], [23]. The Flink system we use for our evaluation is a
mature commercial product, representative of these platforms,
and often cited for its good level of performance [18].

To simplify the implementation of complex algorithms,
most platforms also offer higher-level libraries for specific
domains. Prominent examples are the libraries to process
structured data [24], which convert declarative queries from
SQL-like languages to dataflow programs, often providing
unified abstractions for batch and stream processing of struc-
tured data [25], [26]. The conversion enables automated query
optimizations, which are common in database systems. Other
examples of libraries range from machine learning [27] to
graph processing [28], to pattern recognition in streams of
events [29]. As all these libraries generate dataflow programs,
we could implement similar abstractions on top of RStream.
Given the performance advantages of RStream especially in
iterative computations, we believe that it has the potential
to bring significant improvements in domains like machine
learning and graph processing.

Some research works propose alternative programming
models or extensions to the dataflow model. Naiad [30]
and its timely dataflow model enrich dataflow computations
with explicit timestamps that enable implementing efficient
coordination mechanisms. These characteristics make it more
expressive than the dataflow model used in distributed pro-
cessing frameworks and adopted in our work, but they come at
the cost of a lower-level programming paradigm that exposes
communication and synchronization concerns. Interestingly,
the timely dataflow model has been also implemented in
Rust [31]: as future work, we plan to study this implementation
to gather deeper insight on how alternative programming

models and implementation choices can influence the balance
between performance and ease of use.

Fernandez et al. [32] introduce an imperative programming
model with explicit mutable state and annotations for data
partitioning and replication. TSpoon [33] extends the dataflow
abstraction with additional features and guarantees, such as
transactional semantics. These efforts are orthogonal to our
work, which mostly targets efficient system design and imple-
mentation, rather than investigating new models.

Some systems optimize the use of resources on a single
machine. For instance, StreamBox targets multi-core ma-
chines [34], while SABER considers heterogeneous hardware
platforms consisting of multi-core CPUs and GPUs, which are
increasingly available in modern heterogeneous servers [35].
By building on a compiled language, RStream simplifies
the access to hardware resources with respect to JVM-based
systems. In fact, we already experimented with OpenCL-based
implementations of operators that exploit GPUs, and we plan
to further explore this line of research in future work.

As a final note, all modern data processing systems pro-
vide fault-tolerance mechanisms to recover from software and
hardware failures. As the current version of RStream does
not offer fault-tolerance mechanisms, we disabled them in
all the systems used in our evaluation (see Section V) for
a fair comparison. We plan to implement fault-tolerance in
future releases by building on consolidated approaches such as
asynchronous snapshots [36], which bring negligible runtime
overhead, since they do not block normal processing.

VII. CONCLUSIONS

In this paper, we show that it is possible to reduce the per-
formance gap between distributed data processing platforms
and custom, low-level implementations, without relinquishing
abstraction. To do so, we introduce RStream, a novel data
processing framework written in Rust. RStream provides all
core features of state-of-the-art data processing platforms –
unified batch and stream processing, iterative computations,
windowing, time-based data analytics – within the same,
high-level processing model. At the same time, its design
and implementation choices – compiled language, efficient
memory and communication management, task allocation that
maximizes the use of processing resources – yields up to more
than an order of magnitude improvements in throughput with
respect to existing data processing systems, rivaling custom
MPI solutions in some workloads.

We believe that these findings will foster investigations to
build a new breed of data processing platforms, offering a bet-



ter trade off between simplicity and performance than possible
today. We will continue to contribute to this research line by
investigating new features in the programming model, such as
joins of streams and nested iterations, and new optimizations
to the processing engine, such as multiplexing of network
communication and exploitation of hardware accelerators.
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[36] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas,
“Lightweight asynchronous snapshots for distributed dataflows,” CoRR,
vol. abs/1506.08603, 2015.


