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Abstract—Graph data structures model relations between enti-
ties in various domains. Graph processing systems enable scalable
distributed computations over large graphs, but are limited to
static scenarios in which the structure of the graph does not
change. However, many applications are dynamic in nature, and
this reflects to graphs that continuously evolve over time. In these
contexts, understanding the evolution of graphs is key to enable
timely reactions when necessary. We address this problem by
proposing a new model to express temporal patterns over graph
data structures. The model seamlessly integrates computations
over graphs to extract relevant values, and temporal operators
that define patterns of interest in the evolution of the graph.
We present the syntax and semantics of our model and discuss
its concrete implementation in FlowGraph, a middleware for
temporal pattern recognition in large scale graphs. FlowGraph
presents a level of performance that is comparable to state-of-the-
art graph processing tools when processing static graphs. In the
presence of temporal patterns, it can further optimize processing
by avoiding complex graph computations until strictly necessary
for pattern evaluation.

Index Terms—temporal pattern recognition, graph data struc-
tures, distributed computations, vertex-centric computations

I. INTRODUCTION

Many application scenarios involve relations between enti-
ties that are naturally modeled as graph-based data structures.
Prominent examples are: social networks, where users are
connected to each other by some “friendship” or “follower”
relation; maps, where locations are connected by roads; online
stores, where products are associated with customers who
buy and review them; or even the World Wide Web, where
pages are connected by links. In virtually all these scenarios,
the graph structure evolves over time with the addition and
removal of entities as well as changes in their relations. For
instance, in social networks new posts are constantly added
and they relate to existing ones as well as to users that
read, comment, and forward them. In these contexts, common
problems entail capturing and understanding the temporal
evolution of the graph and its properties, thus enabling timely
reactions when required. For instance, understanding the evo-
Iution of communities of users in social networks can help
customize the interface to improve user experience, and also
propose more suitable advertisements. Similarly, observing
the relations between users and products over time in online
stores can lead to better recommendations and increase profit.
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Studying the evolution of large-scale graphs over time is very
challenging. On the one hand, many algorithms that extract
relevant information from graphs, such as communities in
social networks, are iterative in nature and computationally
expensive. On the other hand, graph changes can occur fre-
quently, so they must be analyzed with low latency to keep
up with their arrival rate.

Unfortunately, existing frameworks for large-scale data pro-
cessing do not meet these requirements. Graph processing
systems [1] enable scalable distributed graph computations
through a programming paradigm known as think like a vertex
(TLAV) [2], introduced in 2010 with the Pregel system [3].
TLAV exploits a bulk synchronous parallel programming
model, where the computation is split into supersteps (epochs):
at each superstep, a vertex can perform some computation
that changes its internal state and/or send messages to other
vertices. This vertex-centric computing paradigm simplifies the
distribution of state and computation over multiple processing
nodes, but only refers to static graphs that do not change
over time. Stream processing systems analyze dynamic data
as it becomes available, to derive relevant information and
enable timely reactions [4], [5]. Modern big data processing
platforms such as Apache Spark Streaming [6] and Apache
Flink [7] offer stream processing capabilities by implementing
functional operators that transform input streams into output
streams. A stream processing job is represented as a workflow
of such operators, later deployed over multiple processing
nodes. However, operators are designed to only store the state
that is strictly needed to compute the desired results and offer
limited or no support for updating large-scale data stores, as
required to store graph data. In summary, despite some initial
studies [8], [9], [10], the problem of defining a programming
abstraction and processing framework to analyze the evolution
of large-scale graphs remains open.

In this paper, we tackle this problem by introducing a
novel programming model that integrates the TLAV graph
processing paradigm with the temporal pattern detection ca-
pabilities of stream processing systems, and in particular of
Complex Event Recognition (CER) systems [11], [12]. In
our model, vertex-centric computations determine the values
of properties associated with vertices and edges. Users can
define temporal patterns that predicate on vertices, edges,
and the values of their properties at different points in time.
We present the model in detail using intuitive examples and



provide a formal definition of its semantics. We discuss the
implementation of the model in FlowGraph, a middleware that
enables distributed detection of temporal patterns in large-
scale graphs. FlowGraph distributes the graph structure across
multiple nodes that contribute to the computation and store
partial results for pattern detection. The evaluation strategy
of FlowGraph immediately stops the analysis of a pattern
when it has no chances of being detected, which potentially
avoids the execution of expensive graph computations and
improves throughput. We conduct a thorough evaluation of
FlowGraph under different workloads. Our results show that
FlowGraph provides a level of performance on par with
state-of-the-art tools when considering static graph processing.
Furthermore, it can exploit temporal relations in patterns to
avoid unnecessary computations and further reduce processing
time when possible.

Paper outline Section II presents background information
and motivates our work. Section III introduces our data
and processing model, and Section IV provides their formal
semantics. Section V illustrates the architecture of FlowGraph,
and Section VI evaluates its performance. Section VII surveys
related work and Section VIII concludes with suggestions for
future research.

II. MOTIVATIONS

Our work is at the intersection of two research fields:
graph processing and stream processing (in particular, pattern
recognition over streams of events).

Graph processing. Graph computations are known to be
particularly complex, due to the inherent dependencies within
graph data [13]. This problem escalates when the size of the
data grows, exceeding the memory and processing capabilities
of single machine solutions, and demanding for distributed
processing platforms. The established approach to design scal-
able distributed graph computations is known as think like a
vertex (TLAV) [2], and was introduced in 2010 with the Pregel
system [3]. TLAV exploits a vertex-centric, bulk synchronous
parallel programming model [14], where the computation is
split into supersteps (epochs): at each superstep, a vertex
can perform computations that alter its internal state and/or
send messages to other vertices. The overall computation
terminates when a superstep does not produce further mes-
sages. Many variants of this model exist. For instance, some
systems introduce multiple phases within each superstep, as
in the gather-apply-scatter (GAS) model [15], others provide
subgraph-centric primitives that enable asynchronous evolu-
tion of subgraphs to some degree [16], [17], or mimic shared
memory programming abstractions to ease the development
of algorithms [18]. Some systems migrate data to optimize
processing, for instance by reducing network traffic [19].
Despite their differences, all these approaches are designed
to handle static graphs that do not change over time. In this
context, they aim to provide processing efficiency, in terms of
time to completion and use of resources, and scalability on the
size of the graph. We defer to the related work Section VII the

discussion of the few approaches that target dynamic graphs
that evolve over time.

Stream processing. Stream processing involves the analysis
of dynamic data as it becomes available, to derive relevant
information and enable timely reactions. Depending on the
desired output, different programming models exist [4]. One
of the first and most widely adopted approaches extends
the relational model to consider time-changing relations and
to continuously update the results of standing queries [20].
Queries are either evaluated on a recent portion of the input
data (a window) or on tables that are continuously modified by
the incoming data. Another processing model, named Complex
Event Recognition (CER) [5], looks for temporal patterns in
the streams of input data. Different formalisms have been
proposed for pattern specification and recognition [11], [12],
ranging from regular expressions/timed automata [21], [22] to
operator trees [23] and logic formulas [24], [25].

Big data processing platforms support dynamic data by
providing functional operators that transform input streams
into output streams. This enables distributed processing by
deploying different operators on different threads or machines,
and by creating multiple instances of each operator that
work in parallel on different partitions of the input streams.
Examples of these systems are Apache Flink [7] and Apache
Spark Streaming [6]. These platforms often provide relational
and CER abstractions as higher-level libraries. Operators in big
data stream processing platforms can be stateless or stateful.
In stateless operators, the processing of an input element only
depends on the content of that element. Stateful operators
retain some internal state across computations. With respect to
the focus of this work, big data stream processing systems are
optimized to handle large volumes of streaming data but retain
state of limited size during the computation, which contrasts
with the need of analyzing large-scale dynamic graphs.

Executive summary. In summary, graph processing platforms
distribute the state of graphs across several processing nodes
for improved performance and scalability, but only consider
static graphs that do not change over time. Stream processing
platforms focus on dynamic data but offer limited support
for integrating large-scale state stores, as required for graph
processing. As a consequence, these approaches are inadequate
to assist users in detecting relevant patterns of evolution in
dynamic graph data structures.

This work aims to fill this gap. We build on the CER model
(recognition of temporal patterns) and augment it to support
graph-shaped state and graph computations. This leads to a
very expressive model that can capture complex patterns of
evolution. For instance, in the context of a social network,
our model could track popular users and automatically notify
when some property (age, geographical region, ...) of their
followers changes significantly in a short period of time. This
could help, for instance, to improve advertisement campaigns
over time.
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Fig. 1: FlowGraph data and processing model overview.

III. DATA AND PROCESSING MODEL

Fig. 1 shows a conceptual overview of the FlowGraph
data and processing model. FlowGraph stores a graph that
continuously evolves over time according to a stream of input
changes. Users install patterns that predicate on the temporal
evolution of the graph, and FlowGraph notifies them whenever
one of the installed patterns occur. FlowGraph adopts an event-
time model [26] where input changes carry a timestamp that
indicates the point in time in which they take place from the
perspective of the sources. We assume that input changes are
received in timestamp order. Mechanisms to cope with out-
of-order arrivals of events have been discussed in the past
and can be adopted to ensure this property [27]. This section
introduces the language used in FlowGraph to express patterns,
and Section IV formalizes its semantics.

A. Data model

The FlowGraph data model is grounded in labeled graphs,
where each vertex and edge has associated properties (labels)
in the form of key-value pairs. We also refer to the set of
labels of a vertex or edge as the state of that vertex or edge.
For instance, in social media, vertices can represent users
and edges the relations among them. Labels associated with
vertices can indicate properties of users, such as their name,
nationality, and age, and labels associated with edges can
represent the type of relation. Labels and their values can
be set explicitly or derive from computations. For instance,
a clustering or community detection computation can label
vertices with the cluster or community they belong to.

The input stream contains time-annotated changes to the
graph structure or state: addition of new vertices or edges (with
their associated labels), removal of existing vertices and edges,
or updates to the values of labels. We denote the collective
state of all vertices and edges of a graph G after applying all
the changes up to time ¢ as the state of GG at time ¢. Patterns
consist of one or more clauses, which are Boolean expressions
that predicate on the current and previous state of the graph.
We say that a pattern is satisfied at time t if all its clauses
evaluate to true.

B. Processing model

Pattern evaluation is triggered by input changes: whenever a
change is received, FlowGraph evaluates all installed patterns
and outputs a notification of detection for each and every
pattern that is satisfied. Pattern clauses can refer both to the
explicit values of labels in vertices and edges, or to derived
values that result from computations. They can reference both
the current state and the state at some previous point in time,

and correlate their values. Next, we incrementally present the
core language constructs to derive values from a labeled graph,
and then we show how they can be combined to form clauses
and patterns.

Computations. FlowGraph Supports vertex-centric computa-
tions to efficiently derive new values from the ones explicitly
defined in vertices and edges. Vertex-centric computations
are iterative: at each iteration each vertex updates its state
and sends out messages to neighboring vertices. Developers
can start a vertex-centric computation on a graph g using
the compute primitive, which is parametric with respect to
the following three functions. These functions are executed
independently on each vertex and can augment the state of
that vertex by adding more labels and iteratively updating the
values of such labels.

init (currState: VertexStateT): VertexStateT

iterate (currState: VertexStateT, edges: Set[EdgeT],
inMsgs: Iterator[MsgT], outMsgs: Set][ (MsgT, EdgeT)]
) : VertexStateT

end (currState: VertexStateT): VertexStateT

Function init initializes the state of each vertex before
any iteration takes place. It takes in input the state of a ver-
tex (currState) and outputs the initialized state. Function
iterate defines, for each iteration, how a vertex updates its
internal state and which messages it sends out. Specifically,
iterate takes in input the current state of the vertex
(currState), the set of outgoing edges (edges), and an
iterator over the set of received messages (1nMsgs). It outputs
the new state of the vertex and adds outgoing messages (with
the edge they need to traverse) to the outMsgs set. Finally,
function end is invoked after the last iteration and returns the
final state of each vertex.

To exemplify, consider an algorithm to compute the max-
imum value for a given label. Function init initializes the
current maximum to the local value for each vertex. At the first
iteration, each vertex sends out its local value for that label.
At each subsequent iteration, a vertex updates its current view
of the maximum based on the incoming messages. If its view
changes after receiving a message with a larger value, then the
node sends out the new value on all its outgoing edges. If the
graph is connected, then eventually the algorithm converges
and all the nodes agree on the same maximum value.

Vertex-centric algorithms exist for many common problems
on graphs. FlowGraph includes a library of implemented
algorithms as a proof of concept, which we use for testing
and benchmarking. Developers can add new algorithms by
implementing the init, iterate, and end functions.

Selection. Selection primitives isolate a subgraph based on the
values of labels in vertices (selectV) or edges (selectE).
Specifically, a select primitive takes in input a predicate,
that is, a function that evaluates the state of vertices or edges
and returns a Boolean value. It retains the vertices or edges for
which the function evaluates to true. The selectV primitive
also retains all and only the edges that connect selected



vertices. The selectE primitive also retains all vertices that
are sources or destinations of selected edges.

For instance, consider the computation of the shortest paths
from a given vertex: selectV might isolate the subgraph
containing all the vertices whose shortest path is below a
given threshold, together with the edges that compose the path,
as exemplified in the snippet below. First, we compute the
shortest path tree on the graph starting from vertex v, using
the init (), iterate () and end () functions defined for
the shortest path algorithm. Then, we select all vertices and
edges having a value lower than 10 for label distance. This
label links the shortest path computation and the subsequent
selection: the computation assigns the label to each vertex,
and the selection evaluates the label to identify a subgraph.
FlowGraph lets user customize the name of the labels used in
computations, such that the results of multiple computations
do not conflict.
graph.compute (ShortestPath. fromVertex (v),

ShortestPath.iterate (), ShortestPath.end())
.selectV (distance < 10)

All the primitives that work on graphs can be applied
to selected subgraphs. For instance, one could start a new
computation that considers only the selected subgraph.

Value extraction. Value extraction primitives let users refer
to values of labels inside vertices (extractV) or edges
(extractE). The primitives take in input a list of labels 1
and return a set of lists of values. Each list in the result set
contains the values associated with the labels in 1 for one
vertex (in the case of extractV) or edge (in the case of
extractE) in the graph. Each vertex and edge has an implicit
and immutable label id, representing a unique identifier that
the system associates with that vertex or edge. FlowGraph
always includes id in the list of extracted labels, so that users
always obtain the identity of the vertex or edge as part of the
extracted values.

To examplify, the following snippet extracts all the distances
assigned to the vertices of the graph identified in the previous
example. Specifically, the ext ractV primitive takes in input
a list consisting of a single label (distance) and returns, for
each vertex in the graph, the id of that vertex and the value
associated with that label.
graph.compute (ShortestPath.fromVertex(v),

ShortestPath.iterate (), ShortestPath.end())

.selectV (distance < 10)
.extractV(distance)

Functional operators. In line with modern big data process-
ing frameworks, FlowGraph provides a library of functional
operators to derive new values starting from extracted ones.
Functional operators include £ilter, which filters the values
according to a predicate, map and flatMap, which transform
each input element into one or more output elements according
to a user-defined function. An important class of functional
operators are reductions, which aggregate all input values into
a single output result. FlowGraph provides common arithmetic
reductions such as maximum, minimum, and average out-of-

the-box. For instance, the following code snippet computes
the average distance from values extracted in the previous
example.

graph.compute (ShortestPath.fromVertex (v),
ShortestPath.iterate (), ShortestPath.end())
.selectV (distance < 10)
.extractV(distance) .avg(distance)

Definition of subgraphs. FlowGraph provides primitives to
identify subgraphs where vertices (subgraphByV) or edges
(subgraphByE) share common values for one or more la-
bels. Subsequent operations are then applied to each and every
subgraph independently. Consider for instance the following
code snippet. It first runs a community detection algorithm that
associates a community label with each and every vertex.
Then, it defines subgraphs having vertices that share the same
value for the community label. Finally, it extracts the set
of vertices for each of these subgraphs, and computes the
cardinality of each set.

graph.compute (CommunityDetection.init (),
CommunityDetection.iterate(),
CommunityDetection.end())
.subgraphByV (community)
.extractV () .count ()

When using subgraphByV, a subgraph contains all and
only the edges having both the source and the destination
vertices in that subgraph. When using subgraphByE, a
subgraph contains all the vertices that are either source or
destination for an edge in that group.

Variables. Using the emit primitive, FlowGraph defines
variables to bind values in different parts of a pattern. Variables
can refer to graphs or values extracted from computations on
graphs. For instance, the following code snippet counts the
number of people older than 20 from the largest community
(or communities).

graph.compute (CommunityDetection.init (),
CommunityDetection.iterate(),
CommunityDetection.end())
.subgraphByV (community) .emit (communityGraphs)

.extractV () .count () .emit (communitySize)
.max () .emit (maxSize)
communityGraphs.select (communitySize == maxSize)

.extractV(id, age).selectV(age > 20) .count ()

The first part of the pattern computes communities and
groups vertices according the their value for the community
label. It associates such groups (graphs) with a variable
communityGraphs. Then, it computes the number of ver-
tices in each graph and stores it into a communitySize vari-
able: this associates a different value with communitySize
for each group. Finally, the first part of the pattern com-
putes the maximum size of communities and assigns it to
a variable maxSize. This example illustrates the flexibility
of variables, which can refer to graphs (as in the case of
communityGraphs), multiple values (as in the case of
communitySize), or a single aggregated value (as in the
case of maxSize).



The second part of the pattern starts from the graphs in
communityGraphs and selects the one (or ones) having
maximum size. This selection refers to the communitySize
and maxSize variables previously emitted. Finally, the pat-
tern selects and counts the vertices having a value greater than
20 for label age.

Temporal operators. To predicate on the temporal evolution
of a graph, users can refer to values at different times.
Specifically, users can refer to the value at a specific point
in time (relative to the evaluation time), or to all values in a
window of time. For instance, the following snippet refers to
the size of the graph (number of vertices) 10 seconds before
the time of evaluation. The before primitive takes in input
a temporal value t with its time unit, and returns the value
of a label or computation as if it was performed t time units
before the current time.

graph.extractV () .count ()
.before (10, TimeUnit.SECONDS)

Similarly, the following snippet computes the maximum size
of the graph in the last 10 seconds. The window operator takes
in input a temporal value t with its time unit, and returns
the list of values that a label or computation assumed in a
time window starting t time units ago (included) and ending
now (excluded), one for each point in time in which the graph
changed (that is, a change was received from the input stream).

graph.extractV () .count ()
.window (10, TimeUnit.SECONDS) .max ()

Pattern clauses. Patterns consist of multiple clauses, each of
them introducing a constraint over some value derived from
the labeled graph at the current time or at some previous point
in time. Clauses are defined with the evaluate primitive,
which takes in input a predicate and applies it to a value. For
instance, the following snippet defines a clause that is satisfied
whenever (at least) one community larger than 20 is detected.
graph.compute (CommunityDetection.init (),
CommunityDetection.iterate(),
CommunityDetection.end())

.subgraphByV (community) .extractV ()
.count () .evaluate(x —-> x > 20)

IV. FORMAL SEMANTICS

This section provides the formal semantics for the data and
processing model presented above.

A. Data model

We model temporal evolution by considering different
graphs, each of them representing the state of a time-evolving
graph at a given point in time. Accordingly, we model a graph
as a 3-tuple G = (Vi, Eg, ta), where Vi is the set of vertices,
E¢ is the set of edges, and ¢ is a timestamp. A vertex v € Vg
is a pair v = (id,¢), where id is a unique identifier of the
vertex and ¢ is the state of that vertex, that is, a set of labels
(key-value pairs) associated with that vertex. An edge e € Eg
is a4-tuple e = (id, vs,vq, £), where id is a unique identifier of
the edge, v and v, are the source and destination vertices, and

¢ is a set of labels (key-value pairs) associated with that edge.
We denote v.¢ (respectively, e.f) the set of labels associated
with vertex v (edge e), and v.l.k (e.f.k) the value associated
with key k in vertex v (edge e). A unique identifier for a vertex
v (edge e) is stored in v.0.id (e.l.id).

We model the input stream S as a (possibly unbounded)
sequence of timestamped notifications (N, ¢;), where N; is
a set of changes to the structure or to the state of the graph
(addition or removal of vertices or edges, or changes in the
value of labels), and ¢; is a timestamp that indicates the point
in time when the changes occur.

We assume timestamps to be monotonically increasing:
Vijen (Ni,t;) € SA(Nj, tj) € SN > jG) =ty >t

Assume that FlowGraph stores a graph G = (Vg, Eg,ta).
Receiving input element (N, t;) leads to a new graph G’ =
(Vor, Egryt;), where Voo and Egr are computed from Vg
and Eg by applying all the changes in N;. Thus, each input
element at time ¢ results in a new graph at time {. When a
pattern refers to a graph at time ¢/, it considers the graph with
the largest timestamp such that ¢ < ¢’ holds, meaning that the
graph was defined by all input elements up to time ¢ and there
are no other input elements between ¢ and t'.

B. Processing model

A pattern p € P is a conjunction of clauses p=c} A--- A
cP. Each clause predicates on a value at some point in time.
A pattern evaluation is triggered by the arrival of an input
element. The pattern is satisfied if all its clauses evaluate to
true, in which case FlowGraph emits a notification of detection
for that pattern. Values in clauses can be fully specified or they
can depend on a set of one or more variables V = vy, ..., v,.
In the latter case, the pattern is satisfied if, and only if, there is
at least one assignment of values v1,..., v, for the variables
in V that satisfy the pattern.

Computations. A computation takes place at some point in
time ¢ and updates the set of labels without changing the struc-
ture of the graph (that is, without adding or removing vertices
or edges) and its timestamp. We formalize a computation as
a function comp : G — G, where G is the set of all possible
graphs, subject to the following constraints: if G’ = comp(QG)
then time, vertices and edges (identifiers) remain the same.

tGI == tG

(Voeve Jorevy, vbid =0 Lid) A (Yyrey,, vevg v-lid =’ Lid)
(VecEg Terepy, elid =€ Lid) A (Voep,, ecng elid= ¢ Lid)
Labels (other than ¢d) can be added or modified according to

the specific semantics of the computation, which is out of the
scope of this formalization.

Selection. We model a label predicate as a function p that
takes in input a set of labels and returns a Boolean value
p : P(L) — bool, where L is the set of all possible labels
and P(L) is its power set. Let us denote P the set of all
possible predicates. We now model the selectV operator,
being selectE similar. We model selection as a function
sel : G x P — G that takes in input a graph G and a



label predicate p and returns a new graph G’, subject to the
following constraints: G’ has the same time as G, contains
all and only the vertices that satisfy the selection, and all and
only the edges that connect such vertices.

tar =ta

VU/GVG/ (’Ul S VG) A v’UEVG (U € Vg < p('l}.é))

Verery (€ € Eg) N Veepq (e € Egr 4 (p(evs.£) Ap(e.va.t))
Value extraction. For value extraction we refer to the
extractV predicate, being extractE similar. Let KL
denote the set of keys in labels and V'L the set of values
in labels. We model values extraction as a function extract :
G xP(KL) — P(VL) that takes in input a graph G € G and
a set of keys keys = {k1,...,k,} € KL, and returns a set of
tuples (viq, v1, ..., Vy), one for each vertex v in GG, where v;q4
is the unique identifier of vertex v and v; € V'L is the value
associated with k; in vertex v.

extract(G, keys) contains as many elements as the number
of vertices in G.

lextract(G, keys)| = |Va|
Each element in extract(G, keys) contains the values of the
labels of one vertex in G.

(Vid, V1,5 .-, vn) € extract(G, keys) “
Joevg (vid = v.Lid AV, cheysVi = U.Z.ki)

Functional operators. Functional operators compute an out-
put dataset starting from an input dataset. The semantics of
the computation is provided via user-defined functions and is

outside the scope of this formalization.

Definition of subgraphs. We provide the semantics of
subgraphByV, being the definition of subgraphByE sim-
ilar. In its simplest form, subgraphByV computes a set
of graphs GS starting from a single graph G. We start to
formalize this case, and then discuss how subgraph operators
can be applied recursively. We model subgraphByV as a
function subgraphByV : G x P(KL) — P(G) that takes in
input a graph G € G and a set of label keys keys € P(KL)

and returns a set of graphs GS € P(G), subject to the
following constraints.

Each graph G’ in G'S has the same time as G.

Vareas ter =ta

Each graph G’ in G'S can only contain vertices and edges that
are in G.

Voreas (veVg »veVg) AN (e€ Eqr > e€ Eg)

All the vertices in a graph G’ in G'S contain the same values
for all labels in keys.

Vareas Yickeys Vv,v’eVG/ (k,val) € v.l — (k,val) €v' £

In the following definitions, kg denotes the value that all
vertices in a graph G € GS share for the label with key
k. Different graphs G’ and G in G'S contain different values
for at least one key.

Vorareas G # G = (Grekeys kar # kar)

There is one graph G’ in the result set for each distinct set of
key values.

Voevy Vkekeys 3grecs kg = vk

An edge is contained in a graph G’ if and only if both its
source and its destination vertices are.

Vareas VecEg € € Egr <+ (evs € Vgr Newwg € Vi)

In the general case, subgraphByV can be applied repeatedly,
thus leading to groups of groups of graphs and so on. We
model this case by generalizing the definition above. First, we
introduce the concept of group Gr € Gr, which is either
a graph G € G, or a set of groups. Then, we redefine
subgraphByV to work on groups. Let us define a predicate
isGraph : Gr — bool that takes in input a group and returns
true if the group is a single graph. We also define a function
nestLev : Gr — N that defines, for each group, its nesting
level, where the nesting level of an atomic graph is 0, while
that of a group is well-defined and equal to n > 0 if, and only
if, each element of the group has the same nesting level equal
ton —1:
Varear ((isGraph(Gr) — nestLev(Gr) = 0) A
(—isGraph(Gr) — (nestLev(Gr) =n <+
Varegr(nestLev(G') = n —1)))

The general definition of subgraphByV takes in input a
group G and a set of label keys keys and returns a group
Gr'. We require that the nesting level of Gr be well defined:

subgraphByV (Gr, keys) = Gr' — J,en(nestLev(Gr) = n)

If the group consists of a graph, then it returns a set of
graphs as defined above (we do not repeat this base case for
the sake of space). If the group is a set, it calls recursively
subgraphByV on each and every element Gr”’ of the set.

—isGraph(Gr) — Gr' = {T|3g,»cqrsubgraphByV (Gr"  keys) =
I}

Temporal operators. Temporal operators let users refer to
graphs at different points in time. This does not change the
semantics of other language constructs, but only the graph
these constructs are applied to.

We model the before operator as a bef function that takes
in input a time point ¢ € T' and returns the most recent graph
at time t: bef : T — G. Recall that S is the stream of input
changes. be f(t) returns the value at the point in time ¢ when
the last notification N’ before ¢ was received from the input
stream S.

bef(t) = G & Inryesta =t AU SN By pryest’ <t <t

We model the window operator as a win function that takes
in input a time point ¢ € T and returns the set of all graphs

between ¢ and the current time (ty,0): win : T — P(G).
win(t) = {G |t <t < tnow A I(N,ts) € S}

Notice that our language enables temporal operators to be ap-
plied not only to graphs, but more generically to values derived
from graphs at different points in time. This is equivalent to
first applying temporal operators to identify graphs at some
point in time, and then deriving some values from them. So,
the above definitions are sufficient to express all the temporal
constructs in our model.



Commands

—

Worker 1 ~ (Ek)el’ 2 = O P/4’
SE R
;:ﬁl't b Ng%)PZ s CI)>4>P6

O "’éj—owb

Fig. 2: Architecture of FlowGraph.

Master

V. MIDDLEWARE IMPLEMENTATION

FlowGraph is an open source project written in Java on
top of the Akka actor system'. Fig. 2 depicts the architecture
of FlowGraph. It comprises a master node that coordinates
many worker nodes. Clients connect to the master node and
submit the patterns of interest together with the code of any
user-defined computation. We implemented a parser of patterns
using the ANTLR parser generator?.

Graph vertices and edges are partitioned across worker
nodes. Workers (dark grey boxes in Fig. 2) are processes,
potentially running on different machines. Each partition (light
grey box in Fig. 2) within a worker is handled by an actor.
Workers can get a different number of partitions, depending
on the computational and memory resources of the machine
where they are deployed. For instance, Fig. 2 shows a de-
ployment with two workers and six partitions. Worker 1
manages partitions P1 and P2, while Worker 2 manages
partitions P3, P4, P5, and P6.

Each vertex obtains a unique identifier upon creation and
is assigned to a partition based on a hash of its identifier.
Edges are assigned to the same partition as their source vertex.
Optimized partitioning of vertices based on graph topology
as well as dynamic repartitioning upon change are currently
outside the scope of this work, but we plan to integrate both
aspects by building on state-of-the-art approaches [28], [29].

Workers store the state of the graph in main memory for
improved performance. As shown in Fig. 2, workers store the
state of their portion of the graph in a multi-version key-value
table: it contains the labels of each vertex and each edge at
multiple points in time, indexed by time and key. Old versions
are deleted from the stores as soon as they cannot influence
the detection of any pattern anymore. Their time of validity is
determined by statically analyzing the patterns when they are
deployed into the system.

Execution model. The input stream of changes is handled
by the master that redirects each change to the partition
responsible for it. The master also governs the execution of
the various computational steps that are necessary to evaluate
a pattern. Specifically, the master issues commands to the
workers indicating the type of primitive they need to execute.
Data remains local to workers that return to the master the
minimum information that is necessary to evaluate the pattern.
Patterns are evaluated sequentially, one after the other.

Computations. Workers execute computations using a vertex-
centric paradigm, with the master acting as a synchronization

Uhttps://akka.io/docs/
Zhttps://www.antlr.org

point between epochs. As discussed in Section III, computa-
tions are parametric with respect to three functions that specify
how vertices initialize and update the state of the computation
at each iteration, and how they exchange information. When
executed on a vertex v, the initialization, iteration, and termi-
nation functions are allowed to modify the current version of
the key-value store associated with v by adding new labels
and iteratively updating their values.

Communication is implemented in a hierarchical way. Mes-
sages that are local to a worker are exchanged through shared
memory. Messages across workers are serialized and sent
through the network. Workers exchange messages directly
without passing through the master. At the end of each itera-
tion, each worker notifies the number of messages generated
during the iteration by all vertices in its partitions. The master
collects notifications from each and every worker, and starts a
new iteration only if some message has been generated.

Selection. When the master commands a selection, each
worker independently performs the operation on all the ver-
tices (or edges) in its partitions. A single inter-worker commu-
nication step is necessary in the case of edges that cross the
boundaries of partitions, to determine whether the edge and
its connected vertices are part of the selection. Each worker
then locally flags selected vertices and edges, and considers
only flagged entities in subsequent operations.

Values extraction. Extraction also takes place independently
on each worker, which simply converts each vertex (or edge)
into a set of values.

Functional operators. Functional operators transform ex-
tracted values, following the same approach as distributed
stream processing frameworks. Actors within workers operate
in parallel on the partitions they are responsible for. Several
operators such as filter, map, or flatmap simply convert
each element in the input dataset into one or more elements
in the output dataset, without requiring any communication
between workers. Other operators, however, require exchang-
ing data. For instance, reduction operators compute a single
value from a dataset. FlowGraph implements several reduction
operators. Whenever possibile, the process takes place hierar-
chically by first combining values within a partition, and then
reducing the values across partitions. The unique result of a
reduction is broadcast to all workers, as it might be used in
subsequent evaluations of the pattern.

Definition of subgraphs. FlowGraph implements subgraph
primitives as local operations within each partition. It does not
move vertices or edges across partitions, but simply annotates
each vertex and edge with an identifier of the subgraph (or
subgraphs) it belongs to. Any subsequent operation that is
performed within a subgraph will take this identifier into
account. For instance, a computation will exchange messages
only across vertices that are part of the same subgraph.

Temporal operators. In the presence of temporal operators,
the master computes the point in time ¢ (or time window w)
to be considered for the subsequent commands, and commu-
nicates it to the workers. Workers follow the same approach



discussed above, but refer to the version of the key-value store
valid at time ¢ (or within the time window w).

Variables and evaluation. Evaluation of pattern clauses also
takes place in workers. Indeed, workers store any value that
derives from graph computations, functional, and temporal
transformations, so they can autonomously evaluate a predicate
on a value and return the result to the master. In the case a
clause depends on a variable previously computed during the
evaluation of a pattern, the master specifies which value the
variable refers to.

VI. EVALUATION

Our evaluation has several goals: (i) study the absolute
performance and scalability of FlowGraph in executing vertex-
centric computations; (ii) compare FlowGraph against state-of-
the-art solutions for distributed vertex-centric computations;
(iii) study how the constructs offered by our pattern definition
language affect performance, scalability, and use of resources.

To answer question (i), we execute the page rank vertex-
centric algorithm while increasing the size of the graph
(number of vertices and number of edges) and the available
processing resources. To answer question (ii), we compare
our system with GraphX [30], a state-of-the-art library for
graph processing in distributed environments. GraphX builds
on Apache Spark [6] and is widely adopted for its efficiency
and scalability. To answer question (iii), we perform detailed
microbenchmarking and isolate the impact of various pattern
constructs on the performance of FlowGraph.

A. Experiment setup

We now present the setup of our evaluation in terms of
processing infrastructure, dataset, parameters that we control,
and values that we measure.

Processing infrastructure. To enable reproducibility of re-
sults, we execute all our experiments on a public cloud infras-
tructure. We deploy FlowGraph on m5.2xlarge EC2 instances
of Amazon AWS. Each instance is powered by 8 vCPU
(4 cores, 2 threads per core) running on Intel Xeon® Platinum
8175 processors at up to 3.1 GHz, backed by 32 GB of
memory and up to 10 Gbps of network bandwidth.

Dataset. To make sure that we measure the performance of
FlowGraph when it is in a steady state, we load a graph into
FlowGraph before starting any evaluation. The graph we load
is directed, fully connected, with an average out-degree of 2.
Each vertex has a label 1abel with a numeric value uniformly
distributed between 1 and 4, included. In the remainder, we
will refer to the number of vertices in the graph as its size. We
inject one input (graph change) at a time and we average our
measurements over at least 10 inputs (100 when considering
graphs smaller than one million vertices). Unless otherwise
specified, each input modifies the state of a vertex, but not
the graph topology. We use the page rank algorithm as vertex-
centric computation. To ensure that the results across several
executions are comparable, we consider a fixed number of
iterations without checking and stopping the iterative process
in the case of convergence.

Parameter Default

Size of the graph M

Average out-degree 2

Number of instances (VMs) 4

Number of workers per instance 8

Number of partitions 32
Computation Page rank (10 iterations)

TABLE I: Parameters used in the evaluation.

Measured values. As FlowGraph is designed to handle dy-
namic data, we are primarily interested in understanding how
fast it can process input data (graph changes). Accordingly,
we measure the average processing time per input element
as the difference between (i) the point in time when an input
element starts to be actively processed by the middleware, and
(ii) the point in time when the middleware ends processing that
element, after producing all the pattern detection results, if
any. The average processing time represents the response time
of the system when not overloaded, that is, when there are
no input elements waiting to be processed in input queues.
The inverse of the average processing time also gives a
good estimate of the number of elements that FlowGraph can
process in a unit of time, that is, its maximum sustainable
input throughput [31]. In addition, when relevant, we also
measure the memory utilization of FlowGraph as the amount
of memory used by one JVM process at a defined point of
execution.

Parameters. To evaluate FlowGraph under heterogeneous op-
erating conditions, we consider several parameters that affect
its performance. We summarize them in Table I, showing their
default value when not differently specified.

B. Vertex-centric computations

First, we focus on vertex-centric computations and we
measure 1) the average processing time of FlowGraph when
increasing the number of vertices and the number of edges
in the graph; 2) the scalability of FlowGraph when increasing
the number of available instances. Since we focus on vertex-
centric computations on a static graph, we compare the perfor-
mance of FlowGraph with GraphX. During these experiments
we recompute the page rank algorithms every time we receive
an input element. We consider a fixed number of 10 iterations.
For GraphX, we use Apache Spark 3.0.0 and the page rank
implementation provided by the library.

Fig. 3a compares the average processing time of FlowGraph
and GraphX while increasing the size of the graph from 1k
vertices to 10M vertices. In absolute terms, FlowGraph per-
forms the computation under 0.6s for a graph of 100k vertices
and under 5s for a graph of 1M vertices. The processing time
increases more than linearly when moving from 1k to 100k
vertices, but then starts growing linearly. We believe this is
because the processing time is dominated by a fixed message
communication overhead with graphs of small sizes. The same
trend appears in GraphX, although the overhead of the Spark
platform is larger. In fact, FlowGraph outperforms GraphX
with up to 10M vertices, and remains comparable with 10M
vertices, despite GraphX being a mature commercial product
optimized for distributed processing. While the focus of our
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Fig. 3: Page rank computation

research is temporal pattern recognition, this proves the effi-
ciency of our prototype implementation in distributed vertex-
centric computations. Fig. 3b compares the processing time
of FlowGraph and GraphX when increasing the number of
outgoing edges for each vertex. Both systems exhibit a similar
trend, with a sub-linear increase in processing time: indeed,
the number of vertices remains constant but they exchange
more messages at each iteration. Interestingly, FlowGraph
outperforms GraphX in all the scenarios we tested. Finally,
Fig. 3c shows how FlowGraph scales when increasing the
number of instances. Despite inter-instance communication,
FlowGraph clearly takes advantage of the added processing
resources. Remarkably, it obtains a speedup of 3.3x when
moving from 1 to 4 instances. In comparison, GraphX per-
forms comparably with one instance, but presents marginal
improvements when moving from 1 to 4 instances. This is
probably due to the higher overhead of the Spark platform
already discussed Fig. 3a and in previous literature [32]. We
also observed the same trend with larger graphs (up to 10M
vertices, not reported for brevity).

C. Pattern detection
We now evaluate pattern detection constructs.

Selection. To evaluate the performance of selection, we mea-
sure the average processing time to select vertices with a
specific value for label label. Recall that 1abel gets a
uniform value between 1 and 4, hence we select 25% of the
vertices. Fig. 4a shows the average processing time when the
size of the graph increases. Since selection requires evaluating
a condition on each and every vertex, the average processing
time increases linearly with the size of the graph. In absolute
terms FlowGraph can handle selection over 5M vertices in
about 0.67s, and over 10M vertices in about 1.6s.

Definition of subgraphs. Fig. 4b shows how the performance
of FlowGraph changes when considering subgraph defini-
tion and selection. We compare three different patterns: no
group performs a computation (10 iterations of page rank)
on the entire graph, as in the previous section. group groups
vertices according to their value of the label 1abel and then
performs the computation on each group. group select
groups vertices and then selects only one group. Recall that
each group contains about 25% of the vertices. The definition
of subgraphs (subgraphByV operator) requires about 1.2s on

a graph of 1M vertices. However, performing the computation
on smaller subgraphs rather than the entire graph reduces the
compute time from about 4.5s to about 0.9s. The select
operator requires about 0.2s to run, but it further reduces the
compute time to about 0.1s, since page rank can converge
in fewer iterations in the selected graph. These results confirm
that FlowGraph can effectively define subgraphs and operate
on them, and this has the potential to speed up computations
with respect to considering the whole graph, as we observed
in the case of page rank.

Windowed evaluations. We now consider a temporal pattern
that evaluates graphs over a window of time. The processing
overhead for the evaluation when increasing the size of the
window is negligible, so the average processing time remains
almost constant. However, the presence of a window requires
storing different versions of the graph. Fig. 4c shows the
average memory utilization per instance when increasing the
size of the window. As expected, the memory utilization grows
linearly. In terms of absolute values, the memory utilization
of each instance remains below 14 GB even when considering
a window size of 1000s.

Temporal sequences. We now evaluate the performance of
FlowGraph in detecting temporal sequences, and we show how
they can be used to optimize the average processing time by
triggering computations only when certain conditions hold. To
do so, we consider the following pattern

graph.compute (OutDegree.init (), OutDegree.iterate(),
OutDegree.end()) .extractV (numOutEdges) .count ()

.before (10, TimeUnit.MINUTES) .emit (previousSize)

graph.compute (OutDegree.init (), OutDegree.iterate(),
OutDegree.end()) .extractV (numOutEdges) .count ()
.evaluate(size -> size - previousSize > 10)

graph.compute (PageRank.init (),
PageRank.end())

PageRank.iterate(),

The first clause of the pattern computes the out-degree
(number of outgoing edges) of each vertex. It compares the
total number of edges at the time of evaluation with the total
number of edges 10 minutes before the time of evaluation
(stored in variable previousSize). The clause is satisfied
only if the difference in size is greater than 10. Finally, the
pattern computes page rank. We test the pattern on a stream
of changes, where each change adds a new edge to the graph.
Under these circumstances, FlowGraph avoids computing the



s |:| : a TTTT T T T TTTT] T T T 1T
2 15| - 2 4 compute || = 10,000 |- B |
g 'é O subgraphByV g & E
= 1 1w [ select g | i
El g 4 = r 1
2 | 1 g “ 1 2 1,000 .
tE B I
£ F 1
0L ] [ %) Lol L] Lol |
0 5 10 1o group 8roup group select 10 100 1,000
Dataset Size (M) Type of pattern Window size
(a) Selection (b) Subgraph definition (c) Windows. Memory per machine.
Fig. 4: Pattern definition
OutDegree | OutDegree | PageRank . . . L . .
comput. eval. comput. Total | analysis Problems in .centrahzed. or dlsFrlbuted settings, in
Page rank 0Os 0s 4565 456s | batch or in near-real-time/streaming fashion [36], [37], [38],
Temporal sequence | 0.10s 0.10s 0.46s 0.66s | [10]. These systems are the most closely related to our

TABLE II: Temporal sequence: computing page rank always
vs only when the number of edges increases by 10 in 10 min.

second clause when the first one evaluates to false. This results
in avoiding an expensive page rank computation when the
number of edges has not increased significantly in the last
10 minutes. Table II compares the average processing time
when evaluating the page rank clause for each input element
(first line) and when using the above pattern (second line).
We consider an input of 300 changes such that the page
rank computation is executed only 10% of the times. As
Table II shows, the computation of the out degree and the
evaluation of its difference over time affects performance only
marginally (0.2s on average), but the time spent to compute
page rank decreases by almost 10 times, since page rank
is only evaluated on 10% of the input. As a consequence
the average processing time decreases from 4.56s to 0.66s.
This proves that (i) FlowGraph computes temporal sequences
efficiently, and (ii) using temporal constraints can avoid com-
plex computations when they are not needed, significantly
decreasing the average processing time.

VII. RELATED WORK

Section II already presented vertex-centric computations
and logic-based temporal pattern recognition, which are the
building abstractions for FlowGraph. This section reviews
approaches that deal with dynamic graphs.

A recent survey on dynamic graph analysis [33] classifies
existing work in the area in two categories: maintenance meth-
ods, which maintain (possibly with incremental algorithms) the
results of a computation as the graph evolves, and evolution
analysis methods, which aim to quantify and understand the
changes that occurred in the underlying graph. Our work fits
into the second class, although it can benefit from efficient
maintenance methods to update the results of computations
used in patterns. Evolution analysis methods focus on specific
problems such as community emergence and evolution [34] or
shortest path distance evolution [35]. Our work is more general
as it can integrate the results of multiple computations within
a pattern, although it does not focus on the optimization of
any specific algorithm. Only few systems implement evolution

proposal. However, to the best of our knowledge, our work is
the first to provide a formal specification of temporal patterns
over dynamic graphs. Song et al. [39] introduce an algorithm
to detect patterns over dynamic graphs. Differently from our
proposal, they look for structural patterns (a problem known
as subgraph pattern matching [40]) and extend it to capture a
strict partial order over time when the vertices and edges that
form the subgraph are added. Although our model can support
subgraph pattern matching through computations, we plan to
include ad-hoc constructs and efficient evalutation algorithms
for this problem in the future.

Graphs are also at the heart of knowledge representation in
many domains. For instance, in semantic Web, queries to a
knowledge base take the form of subgraph pattern matching,
as in the standard SPARQL language [41]. Several works
extended SPARQL to reason on streaming data [42], [43], [44].
Some recent work proposed a logic framework to express and
recognize temporal sequences of subgraph patterns [45], [46].
We believe that the distributed architecture presented in this
paper can be beneficial in this area of application.

Graph databases enable storing and querying graph
data [47]. Temporal graph databases exist [8], but do not
address the detection of temporal patterns as we do.

VIII. CONCLUSIONS

This paper proposes a novel programming model to ex-
press patterns of changes in temporal graph data structures.
The model combines vertex-centric computations to extract
relevant information from graphs with temporal operators to
define patterns of interest that predicate on the evolution of the
graph. We implement the model in the FlowGraph distributed
platform. Our evaluation shows that the performance of Flow-
Graph is comparable to state-of-the-art distributed frameworks
for static computations, and enables further optimizations in
presence of temporal patterns. Our plans for future work
include: (i) extend the library of vertex-centric algorithms, also
considering incremental computations; (ii) introduce operators
for subgraph pattern matching [40]; (iii) study vertex migration
approaches to reduce the cost of computation [28], [19];
(iv) investigate pattern rewriting techniques [48] to optimize
evaluation.
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