Pangaea: Semi-Automated Monolith
Decomposition into Microservices

Simone Staffa, Giovanni Quattrocchi,
Alessandro Margara, and Gianpaolo Cugola

Politecnico di Milano
name.surname@mail.polimi.it

Abstract. As microservices become the reference architecture for many
practitioners, decomposing an application into microservices remain
a challenge. This paper tackles the problem with Pangaea, a semi-
automatic tool to decompose a software system into microservices. Pan-
gaea (i) takes in input a high-level model of the system; (ii) formulates
decomposition as an optimization problem, and (iii) outputs a proposed
placement of functionalities and data onto microservices, using a visual
representation that helps reasoning on the overall architecture. Pangaea
evaluates design concerns, communication overheads, data management
requirements, opportunities and costs of data replication. Our evalua-
tion on a real-world application shows that Pangaea consistently deliv-
ers more efficient solutions than simple heuristics and state-of-the-art
approaches, and provides useful insights to developers.

Keywords: microservices architectures, service decomposition, service
modeling, software architectures

1 Introduction and Motivations

The increasing need to evolve software systems quickly and efficiently made
many IT practitioners migrate from monolithic to microservices architectures.
Microservices architectures define an application as a composition of indepen-
dent units. Microservices contain a subset of logically-related application func-
tionalities, and are developed, deployed, and maintained independently from
each others. Microservice can be developed using a different technology stacks,
they run as independent processes that only interact through network protocols
such as HTTP or MQTT, they can be scaled independently, and faults do not
make the whole system unresponsive, since there is no single point-of-failure. A
key challenge to embrace a microservices approach is how to decompose an ap-
plication into microservices. Indeed, the adoption of microservices architectures
encompasses both technical and managerial concerns, which should be carefully
considered in the decomposition process. In general, we may classify the desired
charachteristic of a successful decomposition as organization, communication,
and data management aspects.

2 S. Staffa et al.

Organization. Microservices are organized around business capabilities: the de-
composition needs to produce microservices that are highly cohesive and include
all the data and processing components to implement a given capability.
Communication. Microservices are developed as independent executables that
communicate using remote procedure calls or asynchronous propagation of mes-
sages. Frequent communication across microservices may increase the overall
response time of the application: the decomposition needs to produce microser-
vices that are loosely-coupled.

Data management. Microservices decentralize data management by design.
Each microservice has its local, partial view of the application domain. Data
integrity in the presence of concurrent operations and replication is enforced
at application level, and may require coordination protocols that are complex,
introduce coupling, and may degrade performance. An effective decomposition
should be aware of integrity requirements and avoid costly coordination by co-
locating related data elements within the same microservice.

In summary, a decomposition always represents a compromise between het-
erogeneous and conflicting forces. Without any tool to support their reasoning,
developers may incorrectly evaluate the possible alternatives, leading to inac-
curate decompositions that affect development, operations, and maintenance
costs. Given the complexity of this problem, some approaches were presented
in the literature to assist engineers in the decomposition process [5,6]. They
range from theoretical frameworks that provide principles and guidelines [1, 3]
to completely automated tools [2,4]. Manual tools still require considerable effort
from developers. Automated tools are often limited to specific application types,
and generate decompositions that may be inadequate to the developers actual
needs. Moving from these premises, this paper introduces Pangaea (Sec. 2), a
semi-automatic tool to decompose a monolith into microservices. Pangaea takes
in input a high-level model of the application. It formulates an optimization
problem that evaluates design concerns (coupling and cohesion), communication
overhead, data management requirements, opportunities and costs of data repli-
cation, and searches for the optimal placement of data and operations across a set
of microservices. Developers can prioritize certain requirements over the others
through a set of parameters in the model. Our evaluation on a real-world appli-
cation (Sec. 3) shows the effectiveness of Pangaea compared to simple heuristics,
a manual decomposition, and a state-of-the-art decomposition approach.

2 Pangaea

This section presents Pangaea in details. Fig. 1 overviews its workflow, where
developers provide (i) a system model, which defines the data entities and oper-
ations that build the application, together with their characteristics and mutual
relations; (ii) a set of input parameters that configure the tool and steer the
decomposition process based on user preferences. Given these inputs Pangaea
works in three steps: (1) a parser translates the system model into an optimiza-
tion problem; (2) a solver outputs a solution to the problem: a possible allocation

Pangaea: Semi-Automated Monolith Decomposition into Microservices 3

x 4| System % Optimization Proposed [Ty
model . problem O solution ~ : I’*\l I ;
(@) o WS e [
Develloper Parser Solver Visualizer : Decomposition + costs :
A
4

Input
2| parameters
Fig. 1: Pangaea: overview of the workflow.

of data entities and operations onto microservices; (3) a visualizer produces a
visual representation of the proposed decomposition together with a detailed
analysis of the costs it incurs. Developers evaluate the decomposition and decide
if accepting it or refining the system model and input parameters.

2.1 System model

Pangaea builds on an expressive yet easy-to-use modeling framework. Developers
model an application in terms of data entities and operations, both characterized
by a set of attributes. They specify data entities and operations as annotations
in YAML, using the @Entity and @Operation tags, respectively. Tags can be
placed in the source code of the application, as comments next to the definition
of the data elements and functionalities they model, or they can be placed in a
single or multiple dedicated files.

Data entities. Data entities are basic elements of data that Pangaea treats
as atomic units. The concept of data entity is independent of the specific data
model and level of granularity, allowing developers to adapt the framework to
their needs. For instance, in a relational data model, a data entity can be used
to model a single table: Pangaea will treat the table as an unbreakable unit
and map it to microservices accordingly. Developers may also decide to model
multiple related tables as a single data entity or to split a table into multiple
data entities. In the first case, Pangaea will not distinguish individual tables
and will consider them as a whole. In the second case, Pangaea will have the
opportunity to assign the various parts of the table to different microservices. A
data entity e is characterized by the following properties.

name: a label that uniquely identifies e in the model.

implementation: an optional string that developers can use to map e to concrete
elements in the application (for instance, the database tables e refers to).
relations: a list of the other data entities e depends on. The use of relations makes
Pangaea aware of semantic connections between data entities, which it may
exploit to increase cohesion and reduce coupling. Developers may also specify
the strength of each relation, which can be either strong or weak. For instance,
in the case of relational tables, developers may model foreign key constraints
between tables as strong relations.

replication overhead: a number indicating the expected overhead of replicating
e within multiple microservices. Indeed, replication may involve a coordination
overhead to keep replicas consistent, which depends on the desired level of con-
sistency and the frequency of updates.

4 S. Staffa et al.

Operations. Operations represent units of execution, which are candidate to
become logic functionalities exposed by microservices. Each operation accesses
data entities and is associated to a single microservice. In Pangaea, an operation
o is characterized by the following properties.

name: a label that uniquely identifies o in the model.

entities: the list of data entities accessed by o. For each data entity, developers
can specify if the access is read-only or read-write. Pangaea interprets accesses
as a dependency relation between operations and data entities, and attempts to
co-locate on the same microservice an operation and the data entities it accesses.
Placing a data entity e and an operation o that accesses e on different microser-
vices incurs a cost in terms of communication (greater for read-write access and
lower for read-only access) and it may increase coupling, as it indicates that a
microservice is requesting data with remote invocations to another microservice
rather than accessing it locally.

frequency: a number that indicates how frequently o is invoked. In the decompo-
sition process, Pangaea will prioritize reducing the costs associated to operations
that are invoked more frequently.

integrity: represents the requirements of o in terms of data integrity. It can be
either low or high. For instance, integrity may include isolation policies to co-
ordinate concurrent invocations, such that developers may distinguish between
a high level of isolation (stronger, but more expensive to enforce, such as seri-
alizable isolation) and a low level of isolation (weaker, but less expensive, such
as monotonic atomic view isolation). Enforcing integrity requirements is more
expensive in distributed settings, that is, when o needs to access remote data
elements. Accordingly, Pangaea will favor decomposition choices that maximize
local data access for operations that require (high) integrity.

forced entities: list of data entities that need to be located on the same mi-
croservice as o. For instance, developers may enforce a single microservice being
responsible for updating a data entity e. Also, developers can use forced entities
to encode application-specific concerns such as access control policies.

2.2 Optimization problem

Pangaea formulates an optimization problem that aims to find an allocation of
data entities and operations onto a set of microservices that minimizes three
costs: (1) Coupling cost is the (design) cost for placing non-related data entities
in the same microservice, which decreases cohesion. (ii) Communication cost is
the overhead of communication across microservices due to dependencies be-
tween operations and data entities that are not placed in the same microservice.
(iil) Replication cost is the overhead of replication. While replication may reduce
the communication cost, keeping replicated data entities consistent requires ad-
ditional coordination and it may result in increased response times. We denote
FE the set of data entities, O the set of operations, and M a set of microservices.
Two decision binary variables z and y encode the placement of operations and
data entities onto microservices, respectively:

Pangaea: Semi-Automated Monolith Decomposition into Microservices 5

Toco,mem = 1 iff o is placed on m, YecE,meMm = 1 iff e is placed on m

Input parameters. Pangaea takes in input a small number of parameters that
guide the decomposition process based on the requirements of developers.
number of microservices: is the cardinality of M and indicates the maximum
number of microservices that the decomposition can use. The solver may use only
a subset of microservices, resulting in a decomposition into fewer microservices.
organization-communication ratio: an integer number « that indicates the im-
portance developers attribute to organization concerns (coupling cost) over com-
munication concerns (communication and replication costs), on a scale between
0 and 100 (default: 50).

relation weight: an integer number w;..; used to weight the cost of placing on the
same microservice two unrelated data entities in comparison with the same cost
for weakly related entities (default: 2).

access weight: an integer number w,.. that represents the overhead of read-write
access with respect to read-only access to data entities (default: 2).

integrity weight: an integer number w;,,; that represents the overhead of enforcing
high integrity with respect to low integrity for operations (default: 2).
Coupling cost. The coupling cost is the cost associated to placing two unrelated
entities on the same microservice, defined for each microservice m € M as:

CPcostm = > Yet,m Ye2,m - CPete2
eleE,e2€cE

where Ye1,m - Ye2,m is 1 if both e; and ey are placed on m, and 0 otherwise, while
CP.1 ¢2 is a measure of the dependencies between e; and es. A strong dependency
leads to a small coupling cost: coupling the two entities in the same microservice
is acceptable as it does not decrease the cohesion of the microservice. We compute
CP,, ¢, based on the relation attributes expressed in the system model: it is 0
if e; and es are the same entity or if there is a strong relation between them, it
is 1 if there is a weak relation, and it equals w,.¢; if they are unrelated.
Communication cost. The communication cost measures the overhead of plac-
ing an operation o and a data entity e accessed by o on two different microser-
vices, defined for each microservice m € M as:

COM Mcost,, = Z Zoym - (1 — Ye,m) - COMM,
0€0,c€EE

where 2o - (1 — Ye,m) is 1 if o is placed on m but e is not, and 0 otherwise,
while COM M, . evaluates the weight of communication between e and o, and
is defined as: COM M, . = acco . - int, - freq, where acc, . is the access cost,
which is 0 if o does not access e, 1 if 0 accesses e in read-only mode and wge. if 0
accesses e in read-write mode; int, is the integrity cost, which is 1 if o has weak
integrity requirements and w;,; if o has strong integrity requirements; finally,
freq, is the frequency of o, as indicated by the developers in the system model.
Replication cost. The replication cost is the overhead of replication, defined
for each data entity e € F as:

6 S. Staffa et al.

REPLcoste = Y yem - REPL,
meM

where the summation indicates that the cost for replicating a data entity is
proportional to the number of replicas (the number of microservices that holds
a replica of e), while REPL, is the replication overhead, as indicated by the
developers in the system model.

Objective function. The goal is to minimize the total cost, expressed as the
sum of coupling, communication, and replication costs, weighted by the ratio a:

TOTcost = - Z CPcosty, + (100 — «) - (Z COM Mcost,, + Z REPLcost.)
meM meM ecE

under the constraints that an operation is assigned to a single microservice, while
an entity may be replicated to multiple microservices:

voEO Z To,m = 1, VeeE Z Ye,m >1

meM meM

Notice that the above problem is not linear (the coupling cost requires mul-
tiplying y by y, and the communication cost requires multiplying = by y). To
linearize the product of any two binary variables a, b, we introduce a new binary
variable ¢ = a-b. We observe that ¢ # 0 <= a = b = 1, which can be expressed
with the following linear constraints: ¢ < a, c<b,c<a+b— 1.

2.3 Presenting the output

We conceive Pangaea as a decision support tool that should help developers
reasoning on the system and evaluate the consequences of a given decomposition
choice in terms of design and operational costs. Accordingly, we built a visualizer
component that offers a graphical representation of the proposed decomposition
as a dynamic Web page. The visualizer shows entities and operations associated
to microservices, as well as remote invocations across microservices, labeled with
their communication cost. In addition, Pangaea outputs a detailed report with
the individual contrinutions to the total cost of the proposed solution. Developers
may use the report to evaluate the trade-offs of the solution and to refine their
system model or choice of input parameters.

3 Evaluation

We evaluated Pangaea on a real-world case study provided by Tutored (https:
//www.tutored.me/), a tech startup that works in the education sector. The
case study consists of a REST API developed with Node.js, Express, and Type-
script. Once modelled in Pangaea, it includes 45 data entities and 71 operations.
The evaluation aims to answer the following research questions: (RQ1) How
do the decompositions proposed by Pangaea compare with alternative ones?
(RQ2) How do practitioners benefit from the usage of Pangaea?

Pangaea: Semi-Automated Monolith Decomposition into Microservices 7

Approach | Cost (comm) | Diff 400 Pangaea (4)
Manual 140.6k (77.65k) | 1206% 2 - Pangaea (3)
Pangaca (4)| 52.4k (5.6k) | +14% & 300 Manual
Pangaea (5) 45.5k (7k) -] Monolith
Monolith 193.15k (0) +320% £200 Distributed
Distributed | 73.75k (71.5k) | +60% P SC GN (4)
SC GN (4) 160k (0) F248% S

SC GN (5) 152.1k (0) | +231%) 100 - SCGN()
SC Teung 317.2k (0) |+373% -3 SC Leung
SC CW 89 8k (27k) | 195% 0 20 40 60 80 10C Sccw

Organization-communication ratio

Fig. 2: Costs with o = 50 . .
Fig. 3: Total costs by varying a.

To answer RQ1, we compared Pangaea with four alternative approaches: (i) a
manual decomposition produced at Tutored; (ii) ServiceCutter (SC), a state-
of-the-art tool for microservices decomposition that uses a graph clustering ap-
proach; (iii) a fully distributed solution (each entity is placed on a separate
microservice); (iv) the original monolith. The manual solution was produced by
software engineers at Tutored who work on the application. It is based on their
knowledge of the domain without the help of any decision support tool. Tu-
tored’s software engineers also produced the input system model for Pangaea.
As the manual solution included four microservices, we evaluated Pangaea with
two configurations: |M| = 4 and |M| = 5. All our experiments are performed
with the default input parameters presented in Sec. 2, unless otherwise specified.
As a solver, we used Gurobi 9, with a maximum timeout of 7 minutes.

‘We compare the total cost of each solution using the cost function of Pangaea,
based on the system model provided by the developers. Fig. 2 shows the results
in terms of total cost of each solution and the fraction of it that is due to
communication (the remaining part being organization). We configure SC with
different graph algorithms (Girvan-Newman — GN, Leung, Chinese Whispers —
CW). When a tool can be configured with an expected number of microservices,
we indicate the number of microservices set as input in parenthesis. Pangaea (5)
provides the solution with the lower total cost, and Pangaea (4), which uses the
same number of microservices as the manual decomposition, has a cost that is
only 14% higher. Interestingly, the total cost of the manual solution is about
3 times higher, and its communication cost is almost one order of magnitude
higher than in Pangaea. Our interpretation is that developers tend to be more
biased towards organization aspects, such as semantic affinities of data entities.
As expected, the monolith solution incurs no communication cost but has a high
total cost due to organization concerns (coupling), while the distributed solution
results in a high communication cost. In terms of usability, SC provides disparate
solutions depending on the selected algorithm, thus it requires developers to
understand the details and differences between clustering algorithms. In absolute
terms, SC solutions are between 95% and 373% more expensive than Pangaea.

Fig. 3 shows how the total cost of each solution changes with the organization-
communication ratio a. Higher values of « linearly increase the cost of central-
ized solutions, such as the monolith and SC GN. Conversely, the cost linearly
decreases for the distributed solution and SC Leung. The total cost of Pangaea
is consistently lower than any other solution, the only exception being the dis-
tributed solution with low communication cost: however, this is an extreme case

8 S. Staffa et al.

that artificially avoids coupling by creating an unrealistically high number of mi-
croservices. In conclusion, Pangaea solutions are the ones with the lowest total
cost with balanced organization-communication ratio and outperform the other
approaches even when the ratio changes.

To gether a better insight on the proposed decompositions, we manually
analyzed their quality. The analysis offered a strong evidence that alternative
approaches could not meet the expectations of developers, leading to decompo-
sitions that fall into two extremes: large microservices that cluster many func-
tionalities with low cohesion or very small microservices that require frequent
communication and do not justify a separate development and deployment.

To answer RQ2, we asked the developers at Tutored to provide an experience
report. The time needed to produce the manual decomposition was between 6
and 8 hours, against the 2 hours needed to annotate the source code for Pangaea.
In line with our objective, the developers described Pangaea as a support tool
that can guide users in improving decomposition in an iterative fashion. The most
important insights were the ones related to the communication cost, which is
much harder to reason about and optimize with respect to organization aspects.

4 Conclusions

This paper introduced Pangaea, a semi-automated tool for decomposing a mono-
lith into microservices. Pangaea uses a simple model of the application to formu-
late an optimization problem that balances organization, communication, and
data management requirements. It outputs a graphical representation of the pro-
posed decomposition together with detailed information on the costs it incurs.
Our evaluation on a real-world application shows that Pangaea offers useful in-
sights to developers. Our plans for future research include: (i) refine the model to
enable more fine-grained modeling when suitable; (ii) evaluate alternative solving
strategies to improve performance and scalability; (iii) extend the visualization
tool to enable interactive adjustements of solutions.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microservices
migration patterns. Software: Practice and Experience 48(11) (2018)

2. Baresi, L., Garriga, M., Renzis, A.D.: Microservices identification through interface
analysis. In: Europ. Conf. on Service-Oriented and Cloud Comput. ESOCC (2017)

3. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting mi-
croservices from monolithic enterprise systems (2016)

4. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic soft-
ware architectures. In: Intl. Conf. on Web Services (2017)

5. Selmadji, A., Seriai, A.D., Bouziane, H.L., Oumarou Mahamane, R., Zaragoza, P.,
Dony, C.: From monolithic architecture style to microservice one based on a semi-
automatic approach. In: Intl. Conf. on Software Architecture. ICSA (2020)

6. Taibi, D., Systd, K.: From monolithic systems to microservices: A decomposition
framework based on process mining. In: Intl. Conf. on Cloud Computing and Ser-
vices Science. CLOSER (2019)

