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ABSTRACT

Complex event processing (CEP) middleware systems are
increasingly adopted to implement distributed applications:
they not only dispatch events across components, but also
embed part of the application logic into declarative rules
that detect situations of interest from the occurrence of spe-
cific pattern of events. While this approach simplifies the de-
velopment of large scale event processing applications, writ-
ing the rules that correctly capture the application domain
arguably remains a difficult and error prone task, which fun-
damentally lacks consolidated tool support.

Moving from these premises, this paper introduces CAVE,
an efficient approach and tool to support developers in an-
alyzing the behavior of an event processing application.
CAVE verifies properties based on the adopted CEP ruleset
and on the environmental conditions, and outputs sequences
of events that prove the satisfiability or unsatisfiability of
each property. The key idea that contributes to the effi-
ciency of CAVE is the translation of the property checking
task into a set of constraint solving problems. The paper
presents the CAVE approach in detail, describes its proto-
type implementation and evaluates its performance in a wide
range of scenarios.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; D.1.3 [Software]: Concurrent Program-
ming— Distributed Programming

Keywords

Complex Event Processing, Middleware, Program Analysis,
Constraint Solving

1. INTRODUCTION

Modern software systems are more and more often built
from loosely coupled, distributed components that observe
stimuli generated from the other components in the form of
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events, process them, and react by producing new events.
We refer to this class of systems as event processing applica-
tions. Examples of event processing applications come from
different fields, such as sensor networks for environmental
monitoring [10], payment analysis for fraud detection [31],
financial applications for trend discovery [17], RFID-based
inventory management for anomaly detection [34].

Event-based middleware systems [29] have been widely
adopted as a communication substrate to inter-connect the
components of event processing applications. Traditionally,
they were used to dispatch events from producers to con-
sumers, based on the interests that the latter registered in
the system. More recently, event-based middleware systems
have evolved from mere communication layers to intelligent
services that administer part of the logic of an event process-
ing application. So called complex event processing (CEP)
systems [15, 25, 20] detect situations of interest —or compos-
ite events— from the observation of specific patterns of event
notifications. This behavior is programmed in a declarative
way through rules that embed part of the application logic
by expressing how composite events are derived.

Using CEP systems, programmers offload part of the event
management to the middleware, which becomes responsible
for filtering, combining and aggregating low level events to
offer a higher level vision of the application.

This new breed of event-based middleware has received
significant attention from both researchers and practition-
ers: for instance, CEP systems have been adopted to manage
the workflow of large companies [26] and to support finan-
cial trading®. Particular effort has been devoted to define
suitable languages to express event processing rules [12, 22,
2] and to design and implement efficient event processing
tools [13, 14, 9, 31].

Despite these achievements, designing, analyzing and eval-
uating event processing applications still remains a difficult
and error prone task. Developers have to check the cor-
rectness of the rules they write with respect to the desired
system behavior, taking into account how each rule inter-
acts with the external environment and with the other rules.
Some interesting research efforts address this problem [30,
19, 35]. Nevertheless, there exist no established analysis and
support tools to help the developers in the complex task of
analyzing event processing applications.

We believe that devising techniques and tools to support
the definition, validation, analysis and evolution of event
processing applications based on CEP middleware has be-

"http://fixglobal.com/home/secrets-revealed-trading-tools-
uncover-hidden-opportunities/



come fundamental to promote the diffusion and usability of
CEP systems, reduce the time and cost for developing event
processing applications, and potentially improve their qual-
ity.

Starting from these premises, this paper introduces CAVE
(Constraint-based Analysis of eVEnts), a novel methodology
and tool to support developers in analyzing the behavior
of an event processing application. CAVE aims to identify
potential errors in event processing applications by check-
ing the satisfiability of properties that indicate whether a
situation of interest can possibly occur, based on the set of
rules written by the developers and on the assumptions they
have about the environment in which the application oper-
ates. Moreover, CAVE automatically generates sequences of
events that prove a given property true or false. In this way,
the developers can easily understand the implications of the
rules they write, and, in case of property violation, they gain
some insight about the specific conditions that lead to such
violation.

CAVE operates by decomposing rules into the set of con-
tent and temporal constraints that event notifications must
satisfy in order to trigger each rule, and relies on efficient
constraint solving tools to prove the satisfiability of prop-
erties. The efficiency of CAVE stems from generating con-
straint solving problems tailored towards the verification of
single properties instead of relying on comprehensive models
of the entire ruleset. This contributes in making CAVE scal-
able and suitable to dynamic contexts, in which the develop-
ers need to frequently change or adapt the ruleset and thus
require a timely verification of the effects of their choices.

Contributions. This paper contributes to the research on
event processing applications and CEP middleware in sev-
eral ways: (i) it proposes a novel and efficient approach to
the analysis of rules for event processing applications, which
helps the developers in verifying relevant properties about
the application under specific conditions; (%) it presents a
concrete implementation of the approach into a prototype
tool; (i) it provides a detailed evaluation of the perfor-
mance of the tool under a wide range of scenarios.

Outline. The rest of the paper is organized as follows:
Section 2 presents background knowledge on CEP middle-
ware systems and discusses the motivations for our work;
Section 3 presents the CAVE approach for the analysis of
event processing applications in detail. Section 4 presents
the implementation of CAVE into a prototype tool and eval-
uates its performance in a wide range of scenarios; finally,
Section 5 surveys related work and Section 6 concludes the
paper and suggests future work in the area.

2. BACKGROUND AND MOTIVATIONS

According to the definition introduced in [15], a CEP sys-
tem analyzes a stream of input primitive events to detect
occurrences of situations of interest, or composite events,
based on declarative rules that define composite events in
terms of patterns of primitive (or composite) ones.

Several CEP systems and rule definition languages have
been proposed by both the academia and the industry. This
section identifies an abstract event model and a rule lan-
guage that cover the functionalities of most of these systems.
We use them in the remainder of the paper, while we defer
to Section 5 a discussion of their generality.

2.1 Event Model

We assume that each event notification is characterized
by a type and a set of attributes. The event type defines
the number, order and names of the attributes that build
the event itself. We also assume that events occur instan-
taneously. Accordingly, each notification includes a times-
tamp, which represents the time of occurrence of the event it
encodes. As an example, in a hardware monitoring system,
the following notification:

Temp@10 (component=GPU, value=28.5)

captures the fact that the temperature measured at time 10
on component GPU is 28.5°C.

2.2 Rule Model

A CEP rule defines a composite events from a pattern of
events. When such a pattern is detected within the stream
of input events, the CEP system knows that the correspond-
ing composite event has occurred and notifies the interested
components. We say that the stream of input events satis-
fies the pattern. We also take the earliest time at which the
pattern is satisfied as the timestamp of the pattern itself and
consequently the timestamp of the corresponding composite
event.

For the sake of generality, in this paper we assume an
ad-hoc CEP language that includes the most common oper-
ators found in existing languages: selection, sequence, con-
junction, disjunction, parameterization, window, aggrega-
tion and negation [15]. In this language, rules assume the
general form:

CE (al=f1(..), ..., an=fn(...)) := pattern

where the symbol := separates the head of the rule from
the pattern. The former specifies the type CE of the com-
posite event captured by the rule and how its attributes
al, ..., an are functionally defined from the attributes of
the events that appear into the pattern.

Selection. The simplest pattern we consider selects a single
event from the input stream through its type and content,
the latter being specified using predicates on its attributes.
For instance, rule:

Overheat () := Host (cpu_load>80 and gpu_load>80 or
cpu_load=100)

is satisfied if and only if an event of type Host is detected
whose attributes cpu_load and gpu_load are both greater
than 80, or the cpu_load alone equals 100. The time
at which a selected event Host occurs becomes the occur-
rence time of the pattern and consequently the timestamp of
Overheat. We admit predicates that combine comparison
relations with logical conjunctions (and) and disjunctions

(or).

Sequence. The sequence operator introduces an ordering
relationship between two events (more specifically, two pat-
terns). In particular, pattern P1 then P2 is satisfied if and
only if pattern P1 is followed by pattern P2, i.e., the times-
tamp of P1 precedes the timestamp of P2. As an example,
rule:

Overheat () := CPU(load>80) then GPU(load>80)



states that composite event Overheat happens if and only if
a CPU event with attribute 1oad greater than 80 is followed
(immediately or after other events) by a GPU event with
attribute load greater than 80. The pattern is detected
when event GPU occurs, so the timestamp associated to the
pattern coincides with the timestamp of event GPU.

Logical connectives. Two patterns can be combined us-
ing logical operators and and or. The former demands both
patterns to be satisfied, while the latter demands at least one
of them to be satisfied. As in the general case, the times-
tamp associated with the resulting pattern is the timestamp
associated with the latest pattern being satisfied. For in-
stance, rule:

Overheat () := CPU(load>80) and GPU(load>80)

states that we have a Overheat composite event if and only
if we detect both a CPU event with 1oad>80 and a GPU
event with 1oad>80. The CPU event may happen before
the GPU event or vice-versa. In any case, the timestamp of
the pattern is the timestamp of the last of the two events.

Windows. The scope of patterns can be limited in time by
using the window operator, which forces a specific timespan
for the events that satisfy the pattern. As an example, the
rule:

Overheat () := [CPU(load>80) and
GPU (locad>80)] 5m..10m

constrains the interval that may separate the CPU and GPU
events: between five and ten minutes.

Parameters. In the presence of patterns that include mul-
tiple events, parameters impose relationships among the val-
ues of attributes within different events. For example the
following rule:

Overheat () := CPU(load>80 and host_id=$h) and
GPU (load>80 and host_id=$h)

introduces parameter $h to relate attribute host_id of
events CPU and GPU.

Aggregates. Aggregates are only used as part of a con-
junction and constrain the result of an aggregation function
computed over the attributes of events that meet certain
conditions. For instance, the following rule:

Overheat () := (CPU(load>80) then GPU(load>80)) and
avg (CPU () .load) >50

states that composite event Overheat is triggered when
event CPU with load>80 is followed by event GPU with
load>80 and the average value of the load attribute in
all the CPU events that occur between the two is greater
than 50.

The general syntax for an aggregate is:

P and f(A(c)) op Vv

where f is an aggregation function, c is a selection con-
straint, op a relational operator and v a value. We call £_v
the value of the aggregation function £ computed over all
the events of type A captured by the selection constraint
c and occurring in the time interval that includes all the
events used to satisfy P. The pattern is satisfied if and only

if P is satisfied and the value f_v satisfies the relation £_v
op V.

Negation. The last operator we consider is negation. It
only applies to selection patterns and can only be used as
part of a conjunction, as in the following rule:

Overheat () := (CPU(load>80) then GPU(load>80)) and
not CPU (load<=80)

which states that composite event Overheat happens if and
only if event CPU with 1oad>80 is followed by event GPU
with 10ad>80 and no event CPU with 1oad<=80 happens
between the two. In general, pattern P and not E is sat-
isfied if and only if pattern P is satisfied and event E never
occurs in the time interval that includes all the events used
to satisfy P.

Hierarchies. The last aspect we consider in our language
is the ability of organizing rules into hierarchies by allow-
ing composite events to be defined from other composite
events. In other words, patterns may include not only prim-
itive events, but also composite events defined by other rules.

2.3 Problem Statement

CEP middleware systems aim to simplify the development
of event processing applications by enabling developers to
express part of the application logic using rules. On the one
hand, rules become a critical part of the application; on the
other hand, writing rules is a complex and error prone task
that involves checking the correctness of rules with respect
to the desired application behavior while taking into account
possible assumptions on the environment in which the appli-
cation operates and dependencies and mutual interactions of
different rules.

To the best of our knowledge, there exist no established
methodologies and tools to support the development of event
processing applications through the analysis and verification
of CEP rules. As we better argument in Section 5, the few
existing proposals in this area either lack the support for
checking application specific properties or rely on expensive
techniques that limit their applicability and scalability.

In this paper we aim to overcome such limitations and pro-
vide a methodology and tool for checking a ruleset against
application specific properties that is capable of scaling to
large sets of mutually interacting rules. The approach con-
siders assumptions about the application environment and
enables root cause analysis in the case of property violation,
by constructing a concrete sequence of events that leads to
the violation.

3. THE CAVE APPROACH

This section motivates the need for a new approach and
then presents an overview and a detailed description of the
CAVE approach.

3.1 The need for a new solution

Possible approaches to the analysis of CEP rules include
(i) model checking techniques, which build a finite state
model of the event processing application and use it to check
properties, and (i) direct translation of rules and properties
into logic formulas, whose satisfiability can be verified using
SAT/SMT solvers.

Model checking techniques such as REX [19] translate
rules into temporal automata and then use model checkers,
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Figure 1: Cost of satisfiability with a FOL model with Z3.

like the UPPA AL model checker in the case of REX, to verify
the properties of interest. While these proposals show that
model checking techniques can be used to analyze CEP rules,
the literature lacks detailed data about the performance of
these approaches and thus about the cost and the feasibil-
ity of the approaches. Our preliminary experiments indicate
the limited applicability of the existing model checking tools
to the problem we want to solve. Indeed, in several cases
the state space explosion leads to prohibitive computational
costs and memory occupancy.

Approaches that translate rules and properties into logical
formulas to be processed through SAT/SMT solvers present
similar feasibility problems. In a preliminary study, we
started by adopting a naive solution that exploits the formal-
ization of CEP rules into First Order Logic (FOL) formulas,
following the semantics proposed in [12]. We used predi-
cates to denote the occurrence time of events and the values
of event attributes, and universal quantifiers and implica-
tions to model the occurrence of a composite event when its
defining pattern is detected.

Figure 1 shows the time required by the Z3 SMT
solver [16] to check the satisfiability of a simple property,
asking for the possible occurrence of a composite event e in
the presence of a single CEP rule that defines e.

This rule requires the occurrence of n primitive events,
each of them having a specific type and satisfying five con-
straints (numerical equalities and disequalities) on the con-
tent of its attributes. The rule does not impose any con-
straint on the time of occurrence of such events. Figure 1
shows that the time required to find a solution grows expo-
nentially with the number n of primitive events used by the
rule. Checking the property with only five events required
more than five minutes of execution. In the case of proper-
ties with six events, the SMT solver could not generate an
output after several hours of execution.

Starting from this result, we recognized the need of pro-
viding a simpler and ad-hoc translation of the rules and
properties to check, with the aim of achieving a level of per-
formance that is amenable to practical usage.

CAVE moves from this consideration and builds a simpli-
fied representation of the property checking problem. This
is obtained by analyzing the ruleset and the property to
check and translating them into a finite set of configura-
tions, each of them including conjunctions and disjunctions
of basic constraints over a number of variables.

The problem of checking the property is translated to the
problem of verifying that at least one configuration admits
a solution, i.e., to a set of constraint satisfiability problems.
Although checking the satisfiability of a (potentially large)
set of constraints remains a computationally hard problem in

general, our evaluation proves that it is tractable in practice
using specialized constraints solvers.

To better understand how the translation implemented in
CAVE helps simplify the problem, let us consider a prop-
erty P, which asks whether rule A () :=[X then Y (y>0)]
0..2m can be triggered at least once.

Formally, such rule states that:

Yy>0AX.its<Yits
vVX,Y A
Yits— Xits <2

= JA(A.ts = Y.ts)

where ts represents the timestamp of the event. As we ob-
served above, the presence of quantifiers increases the com-
plexity of the model and makes the verification of properties
too expensive to be computed by SMT solvers.

CAVE uses a different approach that starts from prop-
erty P to simplify the logic representation of the rule and
to remove universal quantifiers. In our example, CAVE rec-
ognizes that a sequence of two event occurrences of type
X and Y is sufficient to satisfy property P. Moreover, the
presence of these two events is also necessary to satisfy P.
Accordingly, CAVE builds a single configuration that entails
these two events as a set of constraints on numeric variables
that represent their timestamps and attributes values. In
this way, checking the satisfiability of P only involves find-
ing an assignment of values to those variables that satisfy
the constraints expressed by the rule.

3.2 CAVE in a Nutshell

Figure 2 shows an overview of the CAVE approach. CAVE
takes in input a property to be checked, a set of CEP rules
and a number of assumptions on the environment under
analysis. The property represents a desired or undesired sit-
uation of interest, defined as a pattern of events adopting the
same language used for expressing rules. CAVE computes
whether the property can be satisfied or not with the given
ruleset and environmental conditions, i.e., whether it is pos-
sible to find at least one sequence of events that satisfies the
requirements expressed through the property.

CAVE operates in two steps. In the first step, it translates
the property into a finite number of configurations. Each
configuration represents a constraint solving problem, with
a set of variables and a set of constraints over such variables.
In the second step, CAVE uses a constraint solver to find a
solution for at least one configuration. A solution for one
configuration identifies a sequence of events that satisfy the
property. If none of the configurations can be satisfied, then
also the original property cannot be satisfied.

To better describe the main building blocks in Figure 2,
let us consider again a ruleset composed of a single rule R,
which is the same rule we introduced in the previous section:

Rule R
A() := [X then Y(y>0)] 2m

Let us further assume that the application domain imposes
that two events of type Y can never occur within five minutes
from each other. Finally, consider a simple property P1
that asks whether it is possible to observe (at least) one
occurrence of an event of type A.

Property P1
A()
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Figure 2: An overview of CAVE

This is expressed by the very simple pattern above, which
requires the occurrence of an event of type A without any
additional constraint.

CAVE observes that event A can be generated only from
rule R. Thus, property P1 can be satisfied only if rule R can
be triggered at least once. This brings CAVE to create a
single configuration which includes an event of type X and
an event of type Y. The configuration defines three variables:
X.timestamp, Y.timestamp, and Y.y. Intuitively, rule R
defines three basic constraints over such variables:

Y.y>0 and
X.timestamp < Y.timestamp and
Y.timestamp - X.timestamp < 2

In general, CAVE adds to each configuration also the con-
straints derived from the assumptions on the application en-
vironment, if any. In this case, the environment only limits
the distance in time between any two events of type Y. Since
property P1 can be satisfied with a single occurrence of an
event of type Y, CAVE does not add any constraint.

This terminates the translation phase. In the subsequent
phase, the constraint solver recognizes the generated config-
uration as satisfiable and produces a concrete instantiation
of the value of each variable, such as X.timestamp = 1,
Y.timestamp = 2,Y.y = 1.

Let us now consider a second property P2 asking for two
events of type A to occur between three and four minutes
from each other: [A() then A()] 3m..4m

Satisfying property P2 requires triggering rule R twice.
Accordingly, CAVE instantiates a set of variables for each of
the two occurrences, and imposes the constraints expressed
in rule R on both sets of variables, as shown below:

Y 1.y > 0 and

X_1l.timestamp < Y_1l.timestamp and

Y l.timestamp - X_l.timestamp < 2 and

Y _ 2.y > 0 and

X_2.timestamp < Y_2.timestamp and
Y_2.timestamp - X_2.timestamp < 2 and

3 < Y 2.timestamp - Y_l.timestamp < 4 and
Y 2.timestamp - Y_1l.timestamp > 5

The first three constraints predicate over the events required
for the first occurrence of A. Similarly, the next three con-
straints predicate over the events required for the second
occurrence. The last two constraints encode the require-
ment of property P2, i.e., the minimum and the maximum
distance between the two occurrences of A, and the assump-
tion on the environment, i.e., the minimum distance between
any two occurrences of Y. The constraint solver recognizes
these last two constraints as conflicting and determines that
the property cannot be satisfied.

3.3 CAVE in Detail

This section discusses the translation process of CAVE
in detail. It starts from the CEP operators identified in
Section 2 and shows how they contribute to the definition
of variables and constraints in configurations.

For ease of exposition, in the first part of this section we
assume that: (i) the ruleset includes a single rule r that gen-
erates a composite event e; (i7) the property always checks
whether the composite event e can occur at least once, i.e.,
whether rule r can be triggered; (74i) there are no additional
constraints coming from the application environment. Un-
der these assumptions, the goal of CAVE is to prove that
the pattern of r can be satisfied by some sequence of event
occurrences.

In the last part of the section we will remove these assump-
tions, by showing how multiple rules can be used together to
verify the satisfiability of a property and how it is possible
to add assumptions on the environment in which the system
works.

Event instances. CAVE generates a set of variables for
each event instance that explicitly appears in the pattern of
the rule to satisfy. Each variable represents one attribute of
the event instance, including its timestamp.

Consider for example the following rule®:

A() and A() and B{()

The rule includes three event instances, two of them having
type A and one having type B. Assuming that events of type
A include a single attribute named a and that events of type
B include a single attribute named b, CAVE builds a single
configuration with six variables: A_1.a, A_1.timestamp,
A_2.a,A_2.timestamp, B.b, B.timestamp.

The rule above does not introduce any restriction on the
value of the attributes and the time of occurrence of the
event instances. Thus, CAVE does not include any con-
straint in the configuration, meaning that any value of the
variables satisfies the property.

Content constraints. Selection and parameter opera-
tors constrain the values of attributes appearing in event
instances. In particular, selection operators constrain the
value of an individual event attribute, while parameter con-
straints express mutual relations between multiple event at-
tributes. CAVE encodes them as constraints on the corre-
sponding variables.

Consider for example the following rule:

A(x>10 and y<5 and z=$p) and B(k=12 or w=$p)

In the following, we represent a rule through its pattern
and we omit its head, if not strictly necessary.



As discussed in the previous section, CAVE builds a sin-
gle configuration with seven variables, A.x, A.y, A.z,
A.timestamp, B.w, B.k and B.timestamp and generates
the following constraints:

A.x>10 and A.y<5 and (B.k=12 or A.z=B.w)

where the first two constraints derive from the selection op-
erators used inside the event of type A, while the third and
the last constraints refer to the disjunction of the selection
and parameter constraints that predicate on the attributes
of the event of type B.

Temporal constraints. Sequence operators and tempo-
ral windows impose constraints on the time of occurrence of
event instances. CAVE translates these operators accord-
ingly. Consider for example the following rule:

[A(x>10) then B(k>2 or w<3)] 5m

The rule introduces two constraints that limit the temporal
order and the distance in the time in which the event occur.
These constraints are applied in conjunction to the selection
and parameter constraints defined in the pattern, as follows:

A.timestamp<B.timestamp and
B.timestamp-A.timestamp<5 and
A.x>0 and (B.k>2 or B.w<2)

where the first constraint encodes the order between the
event of type A and the event of type B imposed by the
sequence operator. The second constraint encodes the max-
imum distance in time between the two events, as imposed
by the window operator.

Aggregates. Aggregates impose constraints to the result
of a function computed over the value of the attributes of a
number of events. Usually, the set of events considered in
the computation of an aggregate is not explicitly specified
within the rule, but rather characterized by means of some
membership criteria: all and only the events that satisfy the
criteria are included into the computation of aggregates. For
example the following rule:

(C() then B()) and Avg(A(y>0).x)<10

requires the computation of the average value of attribute x
over all events of type A that include an attribute y>0 and
occur between an event of type C and an event of type B.

In general, the number of event instances included in the
computation of an aggregation function is potentially un-
bounded. Thus, it is not possible to determine a finite num-
ber of configurations that represent all possible sets of event
instances that may satisfy the aggregate constraint.

CAVE tackles this problem by asking the developers to
specify a minimum and a maximum number of events that
can participate in each aggregate. Then, it generates a dif-
ferent configuration for each number between the minimum
and the maximum.

For instance, a configuration that considers two events of
type A participating in the aggregate is shown below:

C.timestamp < B.timestamp and

C.timestamp < A_l.timestamp < B.timestamp and
A_1.y>0 and

C.timestamp < A_2.timestamp < B.timestamp and
A_2.y>0 and

Avg(A_l.x, A_2.x)<10

where the second and the third constraints impose that the
first event of type A satisfies the requirements for being part
of the aggregate, i.e., having a value for attribute y greater
than zero and occurring between the event of type C and the
event of type B. Similarly, the fourth and the fifth constraints
impose that the second event of type A satisfies the require-
ments for taking part in the aggregate. The last constraint
encodes the constraint on the result of the aggregation func-
tion.

Finally, notice that other events having the type required
by the aggregate may explicitly appear in the rule. CAVE
uses separate configurations to encode the case in which such
events participate in the computation of the aggregate and
the case in which they do not. Consider for example the
following rule:

(A(y<5) then B()) and Avg(A(y>0) .x)<10

which introduces an aggregate constraint over some events
of type A, but also requires the presence of at least one event
of type A having attribute y lower then five.

Let us consider the problem of building a configuration
with a single event occurrence that participates in the ag-
gregate. There are two options, that CAVE encodes into
two separate configurations. The first one assumes that the
event having attribute y lower than five does not participate
in the aggregate, i.e., does not have a value for attribute y
that is greater than zero:

A_1.y>0 and A_l.timestamp<B.timestamp and
Avg(A_1.x)<10 and

A_2.y<=0 and A_2.timestamp<B.timestamp and
A_2.y<5 and

where A_1 represents the event used for the aggregation,
while A_2 represents the event that satisfies the constraint
y<5.

The second configuration assumes that the event having
attribute y lower than five also participates in the aggregate.

A.y>0 and A.y<5 and
A.timestamp<B.timestamp and
Avg (A.x)<10

Negations. Negations require that events with certain
characteristics do not occur in a given interval. For example,
the following rule:

[A(x=$p) then B()] 5m and not C(y=S$p and z>0)

requires that no events of type C with attribute z greater
than zero and attribute y equals to A.x occur between
events A and B.

Configurations assume a closed world semantics: config-
uration variables represent all and only the occurring event
instances. Because of this, CAVE translates a negation by
simply omitting the corresponding event from a configura-
tion. For instance, the previous rule would be translated as
follows:

A.timestamp < B.timestamp and
B.timestamp - A.timestamp < 5

where only the events of type A and B are represented, while
no event of type C appears.

However, there are cases in which the property explicitly
requires one or more occurrences of an event having the same



type as the negated event. In this case, CAVE adds a set
of constraints for each event having the same type as the
negated one, forcing it to violate at least one of the require-
ments expressed in the negation. Consider for example the
following rule:

C() and
( [A(x=S$p) then B()] 5m and
not C(y=$p and z>0) )

which explicitly requires the occurrence of at least an event
of type C. CAVE forces the event of type C to violate at least
one of the conditions expressed in the negation constraint.
In particular, it forces the event of type C to occur either
before A or after B, or to violate one of the selection and
parameter constraints.

A.timestamp<B.timestamp and
B.timestamp-A.timestamp<5 and
( C.timestamp<A.timestamp or
C.timestamp>B.timestamp or
A.x!=C.y or
C.z<=0 )

Hierarchies of events. As discussed in Section 2, CEP
systems often enable the events generated by one rule to
be used within the pattern of other rules, thus generating
hierarchies of rules and events. In presence of hierarchies
of events, CAVE adopts a rewriting mechanism that substi-
tutes each composite event e appearing in the pattern of a
rule with the sets of constraints required for the generation
of e.

Consider for example the following rules:

X := A(a>0) then B(b>0)
A(a=$p) := C(c=$p) or D(d=$p)
B (b=$p) := E(e=$p)

When translating the first rule, CAVE substitutes the oc-
currence of A and B with all their possible triggering config-
urations. Since there are two different ways for generating
events of type A, CAVE derives two configurations for ob-
taining events of type X, as shown below:

C.c>0 and E.e>0 and C.timestamp<E.timestamp
D.d>0 and E.e>0 and D.timestamp<E.timestamp

The first configuration uses an event of type C to generate
A, while the second configuration uses an event of type D.
CAVE substitutes the variables that refer to event at-
tributes and adapts content constraints accordingly. In the
example above, CAVE recognizes that the value of A.a is
derived from C.c in the first configuration and from D.d
in the second configuration. In both cases the value of the
attribute B.b is derived from the value of E.e. Variables
substitution is also used for temporal constraints. In our
example, the order between the occurrence of A and B is
translated into constraints on the order of the events that
cause the occurrence of A and B, that is to say C and E in the
first configuration, and D and E in the second configuration.

Verifying properties. After describing how CAVE deals
with hierarchies of events, we can remove two of the simplify-
ing assumptions introduced at the beginning of this section,
and precisely describe how CAVE checks properties iden-
tified by (¢) generic patterns of events, (i) in presence of
multiple rules.

CAVE always starts the analysis from the property to be
checked. This is expressed with a pattern of events in the
same language used to specify the CEP rules. If the pattern
only contains primitive events, then CAVE simply checks
the satisfiability of the pattern. Otherwise, it substitutes
each composite event appearing in the pattern recursively,
to obtain a set of configurations that include only primitive
events.

Using this approach, CAVE allows developers to check two
kinds of properties, which answer these questions: (i) deter-
mine whether a certain condition can be possibly satisfied;
(i1) determine whether a certain condition always holds.

Properties of the first kind are used to check if the system
can reach a given state, for instance if a specific rule can
indeed be triggered. They can also be used to check if some
undesired situation can manifest, for instance if two events
may occur within a predefined amount of time, while they
should not. Properties of the second kind are used to capture
invariants, for instance whether events of a given type always
include certain attribute values, or whether they are always
followed by an event of another type.

CAVE verifies properties of the second type —which ask
whether a condition always holds— by negating them, thus
converting them into a satisfiability problem. If the negation
cannot be satisfied, then the property is verified.

Assumptions on the application environment. CAVE
allows the developers to introduce additional constraints
that are not explicitly encoded into the ruleset. This is
useful to (i) express assumptions regarding the environ-
ment in which the event processing application operates and
(4t) check how the application behaves when specific condi-
tions are met.

Instead of defining an ad-hoc language for expressing these
assumptions, we decided to use the same language of pat-
terns adopted to encode rules and properties, thus enabling
the developers to exploit a single language to specify all the
aspects involved in the analysis.

However, patterns are designed to describe situations of
interest and not to indicate invariants of the environment,
i.e., conditions that must necessarily hold. We overcome
this issue by representing assumptions in a negative form,
as the set of situations (patterns) that should never occur,
according to the knowledge that developers have about the
environment.

For example, in an environmental monitoring application,
developers may assume that the value of attribute temp of
events T (which represent temperature readings from sen-
sors), is always between 0 and 35 degrees. This assumption
can be encoded using the following pattern:

T (temp<0 or temp>35)

which models the situations that developers know should
never happen: those where temperature readings are lower
than 0 or greater than 35 degrees.

By knowing that assumptions are expressed as situations
that should never occur, CAVE first translates them in terms
of constraints, as it does for properties to be checked; then
it negates them to derive the constraints that should actu-
ally hold. In the example above, CAVE translate the pat-
tern that encodes the assumption on temperature reading
by adding two constraints to the temp attribute of every
event of type T.



T_n.temp>=0 and T_n.temp<=35

Similarly, developers can specify the assumption presented
in Section 3.2, which forces a minimum distance of five min-
utes to any two occurrences of events of type Y, as follows:

[Y() and Y()] 5m

CAVE searches within configurations for every couple of
variables Y_i.timestamp and Y_Jj.timestamp, repre-
senting the time of occurrence of two events of type Y, and
adds the following constraint:

abs(Y_i.timestamp - Y_j.timestamp) > 5

Finally, developers may restrict the maximum variation be-
tween two temperature values coming from the same room
and occurring within one minute from each other with the
following pattern:

[T (value=$v and room=$r) and
T (value>$v+5 and room=Sr)] 1m

Also in this case, CAVE searches for every couple of events
of type T and imposes that either their distance in time is
greater than one or it violates at least one of the parameter
constraints.

abs(T_i.timestamp - T_j.timestamp) > 1 or
T _i.room != T_j.room or
T_i.value - T_j.value < 5

4. EVALUATION

We experimentally evaluated CAVE with a prototype im-
plementation written in Java that supports all the CEP op-
erators presented in Section 2. Using such tool with an ex-
isting CEP system only requires writing an adapter that
translates the rules written in the system-specific language
into the CAVE operators.

The current implementation includes three main compo-
nents: (i) a translator from properties, assumptions, and
rules to the constraint solver language; (i) a rewriter that
addresses hierarchies of events by substituting the compos-
ite events that appear in a pattern with their definitions;
(ii1) a solver that interfaces with a constraint solving tool.

We evaluated CAVE with several popular constraint
solvers. In this paper, we present the results obtained with
JACOP 4.2 [23], which proved to be the most efficient solver
for our purpose.

4.1 Experimental setting

Given the large amount of factors that may impact on
the performance of CAVE, we consider several different ex-
periments that aim to cover the analysis space as broadly
as possible. During each experiment, we check the satisfi-
ability of a property that involves a given number of com-
posite events, joined together by selection and parameter
constraints, temporal constraints, aggregate constraints and
negation constraints. We measure the total time required to
analyze such property against a given ruleset, under a given
set of environmental assumptions. This total time includes
the time to translate and rewrite the property into a set of
constraints, and the time required by JACOP to solve such
constraints.

In general, not all rules in the ruleset contribute to the
problem addressed by CAVE. Indeed, only the composite

events (and hence the rules) that are directly or indirectly
referenced by the property to check contribute to the set of
constraints that, after the rewriting and translation phase,
have to be checked by the constraint solver. The same is true
for the assumptions on the environment. Thus, we cannot
use the size and structure of the ruleset as a measure of
the complexity of the problem to solve, which we capture
as the number of primitive events and operators that build
the pattern to check after the rewriting phase. These are
the numbers we refer to in the remainder of the section with
the terms: “number of event involved in the property” or
“number of operators involved in the property”.

In our experiments, we define a default scenario, in which
the property to check involves 20 primitive events, including
five attributes each. From those events we build 20 selection
patterns, each using a predicate with five constraints on the
event attributes. These selection patterns are finally joined
together in a single conjunction that represents the property
to check after the rewriting phase.

Starting from this default scenario, we build a number of
experiments, each one varying a single aspect of the problem
to solve, in some cases introducing additional operators, in
other cases changing the number of events, attributes or
operators that are already part of the default scenario.

We repeat each measure ten times, using different seeds
to randomly generate the ruleset and the property to check.
We plot the average value over these measures and the 95™
confidence interval. Furthermore, for each experiment, we
separately consider the case in which the property to check
is satisfiable and the case in which it is not satisfiable. All
the experiments have been conducted on a Intel Core i7-
4850HQ machine with 4 cores and 16 GB of DDR3 RAM,
running Java 1.7.0.51.

4.2 Performance analysis

Event instances. Our first experiment studies how the
number of primitive event instances involved in the analysis
of the property impacts on the performance of CAVE. We
consider a range between 1 and 1000 events.

After the rewriting and translation phase, each event in-
stance introduces six variables, one to encode the timestamp
of the event and five to encode the value of its attributes.
Moreover, given the way our default scenario is organized,
five selection constraints per event instance are defined on
those variables. This means that the number of variables
and constraints passed to the constraint solver is directly
proportional to the number of primitive events involved into
the property to check, which ultimately determines the time
JACOP requires to find a solution. This consideration ex-
plains the trends in Figure 3.

As shown in Figure 3, CAVE is much more efficient than
the naive approach discussed in Section 3.1, with an overall
processing time that is below 500 ms even when considering
properties and rulesets involving 1000 primitive events.

Moreover, we notice that proving a property unsatisfiable
is significantly faster than finding a model for a satisfiable
property. Finally, Figure 3 shows that the processing time
remains stable across multiple runs, with a maximum confi-
dence interval of less than 10 ms.

Selection constraints. Figure 4 shows how the number of
selection constraints defined for each event impacts on the
performance of CAVE. Each selection constraint predicates
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on a different attribute. Thus, increasing the number of
selection constraints leads to an increase in the number of
variables and constraints that are passed to the constraint
solver, and thus to the overall complexity of the problem.

Because of this, the results we measured are similar to
those presented in the previous section. The overall execu-
tion time increases with the number of selection constraints,
but remains within eight seconds even when considering the
satisfiability of a property that involves the conjunction of
1000 selection constraints. Also in this case, proving the un-
satisfiability of a property is up to two order of magnitude
faster.

In the previous experiment we considered only conjunc-
tion connectives to join the constraints of each selection
predicate. Next, we present the results obtained when con-
sidering also disjunctions. In particular, for each event in-
stance we create several conjunctions of two selection con-
straints, and we combine all such conjunctions using disjunc-
tion connectives.

Figure 5 shows the experimental results. With respect to
the previous experiment, the time for proving the satisfia-
bility of a pattern increases by a factor of two. Interestingly,
in the presence of disjunctions, proving the unsatisfiability
of a property requires about the same time as proving the
satisfiability. This is due to the need of proving the un-
satisfiability of all the conjunctions of constraints within a
disjunction before determining that a property cannot be
satisfied.

Parameters. Figure 6 shows how the performance of
CAVE changes with the number of parameters defined in
the property to check. Differently from the previous cases,
increasing the number of parameter constraints does not in-
crease the overall number of variables passed to the con-
straint solver. Because of this, the processing time does
not increase significantly when moving from 1 to 1000 con-
straints.
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Parameter constraints are combined with conjunction con-
nectives. As already observed in the previous experiments,
in this setting, understanding that a property cannot be
satisfied is computationally less expensive than verifying a
satisfiable property. In the first case, CAVE requires at most
2 ms to produce an answer, while in the second case it re-
quires less than 1 ms.

Temporal constraints. Figure 7 shows how the perfor-
mance of the analysis changes when introducing temporal
constraints. In particular, we force all the events involved in
the property to occur in a specific order, and we increase the
number of such events. As a consequence, the overall num-
ber of variables (and constraints) passed to the constraint
solver increases as well.

We observe that the processing time increases up to a
maximum of about 650 ms. In comparison to the experi-
ment in Figure 3, where we increased the number of events
without introducing temporal constraints, we observe an av-
erage 50% increase in the processing time.

Aggregates. As discussed in Section 3, the constraints
that result from the use of aggregates can be potentially
satisfied by sets of event instances with different cardinali-
ties. CAVE limits the analysis to specified finite ranges. We
study the cost of analyzing aggregates by considering the
default scenario, introducing a single aggregate, and mea-
suring the time required to verify or falsify a property with
a specific number of event instances participating in the ag-
gregate.

Figure 8 shows the performance we measured under this
scenario. Even in this case the execution time is very low,
with the maximum processing time for the analysis below
200 ms, even when considering a set of 1000 events.

Negations. Figure 9 shows how the performance of CAVE
changes when dealing with negations. In this experiment,
we consider 20 different primitive events. The property re-
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quires the occurrence of an event of each type, in a specific
order. Each event instance is selected using five selection
constraints. We introduce an increasing number of nega-
tions, each referring to a different event type and each using
five constraints as part of its selection predicate.

As Figure 9 shows, the presence of negations does not in-
troduce a visible overhead in the case of satisfiable proper-
ties. Conversely, the performance of CAVE decreases with
the number of negations when considering non satisfiable
properties. Indeed, as explained in Section 3, negations
introduce disjunctions of constraints within the constraint
solving problem. This increases the complexity of the anal-
ysis, since the constraint solver needs to evaluate the possi-
ble combinations of events enabled by the logic disjunctions
before determining that the property cannot be satisfied.

It is also worth noticing that the additional complexity sig-
nificantly increases the variance of the execution time across
different runs. This is visible in the confidence intervals of
Figure 9. In most cases, the time required for the analysis
in the case of unsatisfiable properties was comparable to the
time observed in the case of satisfiable properties. However,
in a few cases the execution time of the constraint solver
increased by two orders of magnitude.

We can conclude that the presence of a large number of
logical disjunctions as introduced by negation constraints
represents one of the factors with the highest impact on the
performance of CAVE. Nevertheless, CAVE could provide an
answer in less than two minutes in all the tests performed
during our experiment.

5. RELATED WORK

We organize related work into three main parts: first, we
present relevant research in the area of CEP systems; second,
we survey existing approaches to analyze the behavior of
event processing applications; third, we discuss state of the
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art methodologies and approaches to support the design of
event-based and reactive applications.

Complex Event Processing systems. We already pre-
sented CEP systems in Section 2. Here, we put them in con-
text and discuss the generality of our approach. Complex
Event Processing [25, 20] is a form of information flow pro-
cessing [15] specifically devoted to the definition and detec-
tion of high level situations of interest from the observation
of low level event notifications. In particular, CEP systems
build on the detection of patterns that predicate over the
content and the temporal relations of event notifications.

Different, complementary forms of information flow pro-
cessing systems exist. Data stream management systems [3]
extend the relational model to enable queries over streaming
data. They provide operators to manipulate input flows of
data and generate continuous streams of results. Many mod-
ern products embed CEP pattern detection capabilities and
stream management capabilities in a single solution. Exam-
ples are the Esper system® and the Oracle CEP system?*.
Event Processing Networks (EPNs) [32, 20] have been pro-
posed as a graph-based formalism to describe the flow of
data in an event processing application.

CAVE focuses specifically on CEP and pattern detection
rules. We will investigate possible extensions to capture
more general forms of information flow processing as fu-
ture work. In the context of CEP, several languages have
been proposed for rule definition: they range from temporal
extensions of regular expressions [9, 22], to logic-based pro-
gramming approaches [2], to temporal logic [12]. While these
languages present significant differences in terms of syntax
and semantics, they all define patterns that constrain the
time and content of event occurrences. Because of this, the
CAVE approach based on constraint analysis can be adopted
with all of them.

Analysis of event processing applications. The idea of
providing analysis tools for event processing applications has
been investigated in a few work. REX [18, 19] proposes a
formal analysis of CEP rules based on model checking. Sim-
ilar to CAVE, REX allows developers to write and verify
application specific properties. In REX, rules are translated
into temporal automata and properties are encoded as com-
putational tree logic (CTL) formulas; the UPPAAL model
checker [8, 7] is used to verify properties. To the best of
our knowledge, there exist no evaluation of the performance
of REX. At the same time, as we mentioned in Section 3.1,

3http://esper.codehaus.org
4http: //www.oracle.com/technetwork/
middleware/complex—-event-processing/



some preliminary experiments we made, convinced us about
the limited applicability of the existing model checking tools
to the problem we want to solve, and suggested to follow a
different path in developing CAVE.

Rabinovich et al. [30] propose a framework for the analysis
of event processing applications based on the Event Process-
ing Network formalism. The framework includes tools for
static and dynamic analysis, and the paper also discusses
possible implementations of analysis based on formal meth-
ods. The static analysis tool works at the level of event
types, while CAVE also considers the satisfiability of content
constraints. The rule language considered is less expressive
than the one we are using. Moreover, the proposed dynamic
analysis tools aim to analyze properties during the process-
ing of a sequence of input events. For instance, they capture
the set of rules that a specific sequence of events triggers.
However, they do not automatically generate input events
to stress a particular property, as CAVE does.

Weidlich et al. [35] present a tool that translates Event
Processing Networks into Coloured Petri Nets for analysis
and simulation. The proposed approach targets the verifi-
cation of general properties, such as the presence of unused
transitions in the Event Processing Network graph, and pro-
vides tools to assess the behavior of the processing network
through simulation. This work is complementary to CAVE.
Indeed, CAVE enables the verification of application specific
properties. Moreover, CAVE does not consider simulation,
but it can generate sequences of events that satisfy or vio-
late a given property: such sequences constitute interesting
inputs to validate a concrete implementation.

Finally, work related to the analysis of rule-based reactive
systems can be found in the context of Active DBMSs [36].
Most of the work in this area targets general properties, such
as termination [6], detection of upper limits in the number
of triggered rules [4], or confluence [1, 11]. Only a few works
consider application specific properties [24, 21].

Design of event-based and reactive applications. Re-
cently, the design and implementation of (distributed) event-
based and reactive applications has received significant at-
tention. In particular, reactive programming [5] has been
proposed as a programming paradigm to ease the develop-
ment of such applications. It relies on the explicit definition
of data dependencies and on the automated propagation of
changes. The reactive programming paradigm is supported
in several modern programming languages through language
extensions or libraries. Similar to CEP, reactive program-
ming delegates part of the application logic to the runtime
environment or middleware, which takes care of identifying
and propagating changes in variables.

The work on reactive programming targets the same prob-
lem as ours: providing suitable abstractions and methodolo-
gies to develop complex event-based and reactive applica-
tions. We believe that the results presented in this paper
could be extended to support reactive programming. The
interested reader can refer to [28] for an analysis of the com-
monalities and differences between the CEP and the reactive
programming approaches.

Finally, previous work on automated generation of CEP
rules [27, 33] complements the approach presented in this
paper by proposing a tool that analyzes historical data to
automatically or semi-automatically learn rules that model
the application domain under analysis.

6. CONCLUSIONS

Complex Event Processing middleware systems are be-
coming increasingly popular for developing event processing,
reactive applications. In such systems, part of the applica-
tion logic is encoded as a set of rules that capture the rele-
vant aspects of the application domain. Writing such rules is
a critical and difficult step of the development process, since
it requires the developers to take into account complex rules
interactions and dependencies.

In this paper, we presented CAVE, a novel approach that
assists developers and domain experts in defining a reliable
set of rules for their application, by automatically check-
ing rulesets against correctness properties, and generating
concrete sequences of events that prove the validity of the
properties.

CAVE transforms rules into basic constraints that can be
efficiently verified by means of constraint solving techniques.
The paper shows how CAVE captures the main operators
used in modern CEP languages and presents a relevant set
of experiments to demonstrate the efficiency and scalability
of CAVE, whose execution times range from milliseconds to
few minutes.

Our short term research plans include a detailed analysis
of the relation between the expressiveness of the language
used to define properties and assumptions, and the efficiency
of the analysis. For instance, we will investigate the cost for
a fully automated analysis of aggregates. We also plan to
consider additional operators found in some modern CEP
rule languages, such as flexible selection and consumption
policies and recursive definitions [15]. Finally, we plan to
integrate performance analysis and data mining techniques,
to automatically learn the relevant characteristics of the en-
vironment in which the application operates.
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