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ABSTRACT
The need for timely processing large amounts of informa-
tion, flowing from the peripheral to the center of a system,
is common to different application domains, and it has jus-
tified the development of several languages to describe how
such information has to be processed. In this paper, we an-
alyze such languages showing how most approaches lack the
expressiveness required for the applications we target, or do
not provide the precise semantics required to clearly state
how the system should behave. Moving from these premises,
we present TESLA, a complex event specification language.
Each TESLA rule considers incoming data items as notifi-
cations of events and defines how certain patterns of events
cause the occurrence of others, said to be“complex”. TESLA
has a simple syntax and a formal semantics, given in terms of
a first order, metric temporal logic. It provides high expres-
siveness and flexibility in a rigorous framework, by offering
content and temporal filters, negations, timers, aggregates,
and fully customizable policies for event selection and con-
sumption. The paper ends by showing how TESLA rules
can be interpreted by a processing system, introducing an
efficient event detection algorithm based on automata.

1. INTRODUCTION
Distributed applications often require large amount of in-

formation to be timely processed as it flows from the periph-
eral to the center of the system. As en example, environ-
mental monitoring needs to process data coming from sen-
sors deployed on field to acquire information about the ob-
served world, detect anomalies, or predict disasters as soon
as possible [9, 16]; financial applications require a constant
analysis of stocks to detect trends [15]; fraud detection tools
must observe continuous streams of credit card transactions
to prevent frauds [26]; RFID-based inventory management
performs a continuous analysis of registered data to track
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valid paths of shipments and to capture irregularities [28].
The traditional data processing model implemented by

DataBase Management Systems (DBMSs) does not suit the
timeliness requirements of these applications, as it needs in-
formation to be stored and indexed before processing. This
led to the development of a number of systems specifically
designed to process flows of information according to a set of
deployed rules. Despite their common goal, these systems
differ in a wide range of aspects, including architectures,
data models, languages, and processing mechanisms [13].
After several years of research and development two mod-
els emerged: one comes from the database community as
an evolution of active databases, and is usually called the
Data Stream Processing (DSP) model [6], the other comes
from the community working on message-oriented (in par-
ticular publish-subscribe) middleware and is usually called
the Complex Event Processing (CEP) model [23].

In this paper we focus on the languages to express how
incoming information has to be processed, and claim that
none of those proposed so far is entirely adequate to fully
support the needs that come from the aforementioned ap-
plication scenarios. On one side, the data transformation
approach adopted by the DSP model is not suited to rec-
ognize patterns of incoming items tied together by complex
temporal relationships. On the other side, CEP languages
are often oversimplified, providing only a small set of oper-
ators, insufficient to express a number of desirable patterns
and the rules to combine incoming information to produce
new knowledge. Even worse, the semantics of such languages
is usually given only informally, which leads to ambiguities
and makes it difficult compare the different proposals.

To overcome these limitations, in this paper we propose
a new language called TESLA (Trio-based Event Specifica-
tion LAnguage). Each TESLA rule considers incoming data
items as notifications of events and defines how (complex)
events are defined from simpler ones. Despite an easy to
use, clean syntax, with a limited number of different opera-
tors, TESLA is highly expressive and flexible, as it provides
content and temporal constraints, parameterization, nega-
tions, sequences, aggregates, timers, and fully customizable
policies for event selection and consumption. At the same
time, not to incur in the semantic ambiguities affecting many
existing languages, the TESLA semantics is formally speci-
fied by using TRIO [19, 22], a first order, metric temporal
logic. Moreover, since an event detection language is point-
less without a system interpreting it, we define how TESLA
rules can be translated into automata to implement an effi-
cient event detection engine.



The rest of the paper is organized as follows: in Section 2
we discuss the limitations we found in existing works and
clarify our design goals; in Section 3 we present the TRIO
logic. In Section 4 we introduce the TESLA event model
and system architecture, and describe our language in de-
tails, providing the semantics for all valid operators, while
in Section 5 we show how TESLA rules can be translated
into automata for efficient pattern detection. Finally, we
discuss related work in Section 6, providing some conclusive
remarks in Section 7.

2. WHY A NEW LANGUAGE
To justify the need for a new event specification language

we use an example, which illustrates the main limitation
of existing approaches and shows the kind of expressiveness
and flexibility we need.

2.1 A motivating example
Consider an environment monitoring application that pro-

cesses information coming from a sensor network. Sensors
notify their position, the temperature they measure, and the
presence of smoke. Now, suppose a user has to be notified
in case of fire. She has to teach the system to recognize
such critical situation starting from the raw data measured
by sensors. Depending on the environment, the application
requirements, and the user preferences, the notion of fire
can be defined in many different ways. Here we present four
possible defining rules and we use them to illustrate some of
the features an event processing language should provide.

i. Fire occurs when temperature higher than 45 degrees
and some smoke are detected in the same area within
3 min. The fire notification has to embed the temper-
ature actually measured.

ii. Fire occurs when temperature higher than 45 degrees
is detected and it did not rain in the last hour.

iii. Fire occurs when there is smoke and the average tem-
perature in the last 3 min. is higher than 45 degrees.

iv. Fire occurs when at least 10 temperature readings with
increasing values and some smoke are detected within
3 min. The fire notification has to embed the average
temperature of the increasing sequence.

First of all, they select relevant notifications from the his-
tory of all received ones according to a set of constraints.
Two kinds of constraints are used: the first one selects ele-
ments on the basis of the values they carry, either to choose
single notifications (e.g. those about temperature higher
than 45 degrees) or to choose a set of related notifications
(e.g. those coming from the same area). The latter case is
usually called parameterization. The second kind of selec-
tion constraints operates on the timing relationships among
notifications (e.g. selecting only those generated within 3
minutes) and allows to capture sequences of events (e.g.,
high temperature followed by smoke or vice-versa).

Beside selection, rule (ii) introduces negation, by requiring
an event not to occur in a given interval. Similarly, rule (iii)
introduces aggregates. In particular, it defines a function
(average) to be applied to a specified set of values (temper-
ature readings in the last 3 minutes) to calculate the value
to be carried by the complex event. Rule (iv) is interesting

as it combines the two kinds of selection constraints (those
on values and those on timing) to define an iteration that
selects those elements that bring growing temperature read-
ings. Such kind of rules is common in various domains, like
in financial applications for stock monitoring, where they
are used to promptly detect relevant market trends.

Finally, when the desired combination of notifications has
been detected, rules have to specify which notification to
create (e.g. fire) and they have to define its inner structure
(e.g. the notification has to embed a temperature reading).

If we look at existing languages, we notice how they differ
in the set of operators they provide, which, in turn, deter-
mine their expressiveness. As an example, not all languages
provide parameterization or iterations [13]. We think that
a language for CEP should be able to express all the con-
structs above: selection, parameterization, negations, aggre-
gates, sequences, and iterations. Additionally, it should be
simple and unambiguous, i.e., it should be easy to write rules
having a clear and precise semantics.

2.2 Limitations of existing languages
As mentioned in Section 1, most of the languages recently

proposed in the literature to express rules like those above
can be classified in two groups: Data Stream Processing
(DSP) and Complex Event Processing (CEP) languages.

A notable representative of the first class is CQL [5], cre-
ated within the Stream project [4]. Information flowing into
the system is organized in homogeneous streams composed
by timestamped tuples, all sharing the same schema. Each
CQL rule (query in CQL jargon) takes one or more streams
as inputs and produces one output stream. Queries are
defined using three types of operators. Stream-to-Relation
(S2R) operators select a portion of a stream to implicitly
create a traditional database table. They are also known as
windows and operate either on time (e.g. selecting tuples re-
ceived in the last 5 minutes every time a new tuple arrives) or
on the number of elements (e.g. selecting the last 10 tuples
every time a new one arrives). Relation-to-Relation (R2R)
operators are mainly standard SQL operators. Relation-to-
Stream (R2S) operators generate new streams from tables,
after data manipulation. Each CQL query is composed by
a S2R operator, one or more R2R operators, and one R2S
operator. A key aspect of languages like CQL is forgetting
the ordering between elements when moving from streams
to relations. No explicit sequencing operators are provided
and timestamps, if not artificially introduced as part of the
tuples’ schema, cannot be referenced during R2R processing.
As a result, rules like the fourth of our example, which in-
volve a single sequence of information items, are very hard
to write in CQL, or even impossible if tuples do not in-
clude explicit references to time. More in general, all queries
that select elements from the history of received items us-
ing timing constraints do not find a natural support in DSP
languages. In fact, such languages are mainly designed to
isolate portions of input flows and to perform traditional
database processing within the bound of portions, but they
show severe limitations when it comes to recognize complex
patterns of relevant items among received ones [13].

It is worth mentioning that more complex DSP languages,
which extend the expressive power of CQL, exist: a remark-
able example is represented by ESL [7], a Touring complete
DSP language. With these languages detecting complex pat-
terns becomes possible but it remains difficult to support



and far from natural, since the general schema of the lan-
guage remains that of CQL. Moreover, such languages, with
their more complex and less common syntax, suffer some
limitations typical of CEP languages (see below), mainly in
terms of lack of a rigorous semantics.

CEP languages present a different processing model w.r.t.
DSP ones: a model specifically designed for the detection
of complex temporal patterns of incoming information. In-
deed, they consider single information items flowing into the
system as representations of events occurred in the observed
world, and they define how complex events result from sim-
ple ones. This model is better suited to naturally express
the rules in our example; however, existing languages present
two problems.

First, most of them are extremely simple and present se-
rious limitations in terms of expressiveness; for example,
some languages force sequences to capture only adjacent
events [8], making it impossible to express rules like i and
iii above. Often negations are not allowed [21, 8], or can-
not be expressed through timing constraints [3], like in rule
ii. above. Other widespread limitations are the lack of a
full-fledged iteration operator (Kleene+ [20]), that could al-
low rules to capture a priori unbounded repetitions of events
(like in rule iv.), and the lack of processing capabilities for
computing aggregates.

Second, a formal definition of operators is hardly ever pro-
vided, leading to semantic ambiguities. As an example of
the latter problem, consider rule (i) above. It defines a sim-
ple conjunction of two items, which is supported by almost
all existing CEP languages and apparently poses no issues.
However, if you consider the sequence of events depicted in

T(48)t = 1

t = 1.5

t = 2

t = 2.5

T(48) T(50)

T(48) T(50) S

T(48) T(50) S S

Figure 1: Monitored events history

Figure 1 some problems emerge. Suppose that all events
come from the same area and T(x) represents the event no-
tification temperature = x, while S represents the presence
of smoke. Initially, an event T(48) occurs, followed by an-
other one, T(50). When the event S is received the first issue
arises: how many fire notification should the system gener-
ate? Two (one for each pair <T(48),S> and <T(50),S>) or
just one? And, if we choose to deliver only one fire notifi-
cation which value of temperature should it embed? Rule
(i), expressed in natural language, is ambiguous, but unfor-
tunately most CEP languages are not more precise. We call
this problem of deciding how to combine events when mul-
tiple choices are available the event selection problem. Now
suppose that the system reacts by producing two notifica-
tions, what happens when another event S occurs, like at
t = 2.5? In some sense the two events T have already been
“used”: should they be considered again or not? We refer to
this problem of deciding whether event notifications become
invalid for further processing after being considered as the
event consumption problem.

It is worth noting that apart from a problem of lack of
precise semantics, the case above also evidence a problem of
expressiveness, since different applications may require dif-

ferent event selection and consumption policies. Not only,
sometimes a single application may need different policies
for different rules. Alert notifications, for example, are usu-
ally required only once, even when they can be generated by
multiple combinations of events; financial analysts, on the
contrary, may be interested in all possible combinations of
stock events. For this reason we think that selection and
consumption policies should be accessible and customizable
within the rule specification language, thus allowing the rule
manager to choose the most appropriate one for each ap-
plication and each rule within the same application. On
the contrary, existing CEP languages (e.g. [21, 25, 8]), de-
fine, often implicitly and only through an actual reference
implementation, a unique selection and consumption policy
and do not allow users to change them. Some remarkable
exceptions exist: in particular some languages designed for
Active DBMSs allow users to choose selection and consump-
tion policies as part of the definition of a rule [14]. However,
also in these cases, only a few predefined choices are possible
and users cannot tailor them to their needs.

2.3 TESLA design goals
Moving from these considerations we designed TESLA to

overcome the limitations found in other languages, provid-
ing a high degree of expressiveness to users while keeping a
simple syntax with a rigorously defined semantics. In partic-
ular, TESLA provides selection operators, parameterization,
negations, aggregates, sequences, iterations, and fully cus-
tomizable event selection and consumption policies, while
also supporting reactive and periodic rule evaluation within
a common syntax. At the same time, we provide a formal
semantics for TESLA using a first order temporal logic. The
remainder of this paper discusses these issues in details.

3. TRIO: A BRIEF OVERVIEW
TRIO [19, 22] is a first order logical language augmented

with temporal operators, which enable to express properties
whose value change over time. TRIO temporal operators,
unlike those of conventional temporal logic, provide a metric
on time: they express the length of time intervals quantita-
tively. The meaning of a TRIO formula is not absolute: it
is given with respect to a current time instant that is left
implicit in the formula. These two properties make TRIO
well suited to naturally specify events and their occurrence.

The alphabet of TRIO includes sets of names for vari-
ables, functions, and predicates, plus a fixed set of oper-
ators, including propositional symbols (∧, ¬), quantifiers
(∀), and the temporal operators Futr and Past. TRIO is
a typed language: variables, functions, and predicates have
their own type, which determines the set of values they can
assume, return, or take as arguments. Among the allowed
types there is a distinguished one, required to be numeric in
nature: the temporal domain. TRIO distinguishes between
time-dependent variables (resp. functions and predicates),
whose value may change with time, and time-independent
ones, whose value is independent from time.

The syntax of TRIO is recursively defined as follows:

• Every variable is a term

• Every n-ary function applied to n terms is a term

If a term is a variable, then its type is the type of the vari-
able; if the term results from the application of a function,
then its type is the range of the function.



• Every n-ary predicate applied to n terms of the appro-
priate types is a formula

• If A and B are formulas, ¬A and A ∧B are formulas

• If A is a formula and x is a time-independent variable,
∀x A is a formula

• If A is a formula and t is a term of the temporal type,
then Futr(A, t) and Past(A, t) are formulas

Abbreviations for the propositional operators ∨, →, true,
false, ↔ and for the derived existential quantifier ∃ are
defined as usual.

The semantics of TRIO is formally defined in [19, 22], here
we focus on the two temporal operators Futr and Past. In
particular, formula Past(A, t) (resp. Futr(A, t)) is true if
A holds t time units in the past (resp. future) w.r.t. the
current time, which is left implicit in the formula.

A lot of temporal operators have been derived from Futr
and Past. In the following we will make use of two of them:
always (Alw(A)) and within the past (WithinP (A, t1, t2)),
where A is a formula and t1, t2 terms of temporal domain;
they are defined as follows:

Alw(A) = A ∧ ∀t(t > 0→ Futr(A, t))

∧ ∀t(t > 0→ Past(A, t))

WithinP (A, t1, t2) = ∃x(t1 ≤ x ≤ t1 + t2 ∧ Past(A, x))

Before concluding this brief overview of TRIO, it is worth
noting how such logic only requires the temporal domains
to be numeric, and does not dictate further constraints: it
can be, for example, either discrete or continuous. TESLA
keeps the same property, enabling designers to choose the
more suitable temporal domain according to their needs.

4. LANGUAGE DEFINITION
In this Section we present the TESLA language in de-

tails; in particular we describe the TESLA event and rule
models, then we define the general structure of rules and
we show how they can be translated into TRIO formulas
that precisely define their semantics. Finally, we present all
the possible patterns of events that can be captured through
TESLA rules, describing their use through various examples.

4.1 TESLA event and rule model
In TESLA we assume events, i.e. things of interest, to

occur instantaneously at some points in time. In order to
be understood and processed, events have to be observed
by sources (see Figure 2), which encode them in event no-
tifications (or simply events). We assume that each event
notification has an associated type, which defines the num-
ber, order, names, and types of the attributes that build
the notification. Notifications have also a timestamp, which
represents the occurrence time of the event they encode1.
As an example, an event can be the temperature reading in

1The issue of who timestamp events, e.g., the sources or
the CEP system, and the need of ad-hoc mechanisms to
cope with out-of-order arrivals, have been discussed in the
past [27] and are out of the scope of this paper. These
are system issues that do not impact the TESLA language,
which is meant to process events in timestamp order, who-
ever sets it.

a room at a specific time. A sensor may observe this event
and generate the following notification:

Temp@10(Room = ”Room1”, V alue = 24.5)

Where Temp represents the type of the notification and 10
is the timestamp. The Temp type defines two attributes: a
string that identifies the room in which the temperature was
measured, and the actual measure (a float). As attributes
are ordered, notifications may also omit their names. TESLA

Complex Event 
Processing System

Sources Sinks

Event Notifications

Rule Managers

TESLA
Rules

Event Notifications

Figure 2: TESLA Reference Architecture

rules define complex events from simpler ones. The latter
can be observed directly by sources or they can be complex
events defined by other rules (in the following we will refer
to this mechanism using the term “hierarchies of events”).
Sinks subscribe to events and receive notifications as soon
as their requests are met. Subscriptions are as simple as in
traditional publish-subscribe languages and include the type
of relevant events together with a filter over the content of
events attributes, like in the following example:

Subscribe(Temp, Room = ”Room1”and V alue > 20)

Subscriptions may refer to simple events, i.e., those directly
observed by sources, or to complex ones, i.e., those derived
through TESLA rules. The resulting architecture distin-
guishes between Rule managers who define TESLA rules,
and sinks who subscribe to events. As we will argument
later, we fell that keeping the two roles separate helps build-
ing reusable rules.

4.2 Structure of the rules
Each TESLA rule has the following general structure:

define CE(Att1 : Type1, ..., Attn : Typen)

from Pattern

where Att1 = f1, .., Attn = fn

consuming e1, .., en

Intuitively the first two lines define a (complex) event from
its constituents, specifying its structure — CE(Att1: Type1,
..., Attn: Typen) — and the pattern of simpler events that
lead to the complex one. The where clause defines the actual
values for the attributes Att1, .., Attn of the new event using
a set of functions f1, .., fn, which may depend on the argu-
ments defined in Pattern. Finally, the optional consuming
clause defines the set of events that have to be invalidated
for further firing of the same rule.

4.3 Semantics of rules
Each TESLA rule associates a patter of events p with

the complex event e it represents. Accordingly, to provide
a precise semantics for rules we need to express the logical
equality between the validity of p at a given instant and the
occurrence of e at the same instant.



In TRIO we can express the occurrence of an event using
a time-dependent predicate, which becomes true when the
event occurs. On the other hand, as we will prove through
various examples, in TESLA several events of the same type,
possibly with the same attribute values, may occur at the
same time. To differentiate them we have to introduce the
concept of label : it is a unique global identifier for event no-
tifications2. While we can safely assume that events coming
from external sources already have their own unique label,
we have to define the label of those complex events defined
through TESLA rules. To do so, we observe that a given set
of events s can satisfy a rule r at most once (we will prove
this later through the uniqueness of selection theorem). We
leverage this property assuming that a time-independent la-
bel generation function lab is defined, which returns new
labels taking two arguments: a unique rule identifier, and a
set of labels (those of the set of notifications s that satisfied
the rule leading to the new event). For labels to uniquely
identify complex events, lab has to be injective:

∀ r1, s1, r2, s2

((lab(r1, s1) = lab(r2, s2)) ↔ (r1 = r2 ∧ s1 = s2))

Once labels have been introduced we can use them to for-
mally define the occurence of events through the predicate
Occurs(Type, Label), which is true at the time when the
event of type Type having label Label occurs, and false in
every other instant. The fact that labels are unique and
that a given event notification occurs only once, is formally
captured through the following formulas:

Alw ∀e1, e2 ∈ E, ∀l ∈ L

((Occurs(e1, l) ∧Occurs(e2, l))→ e1 = e2)

Alw ∀e1, e2 ∈ E, ∀l ∈ L, ∀t > 0 (Occurs(e1, l)→
(¬Past(Occurs(e2, l), t) ∧ ¬Futr(Occurs(e2, l), t)))

Where L is the set of all valid labels and E is the set of all
event types. The first formula states that, in a given instant
of time, there cannot be two notifications having the same
label and different types. The second formula guarantees
that, if an event with label l occurs at time t, no other
events having the same label can occur at different times.

To reason about the content of event notifications we in-
troduce the domain N of all valid names for event attributes.
Since attributes can have different types (e.g. string, int,
float) for each type X we define a time-independent func-
tion attV alX : L × N → X: given a label l and the name
of an attribute n it returns the value of the attribute in the
event notification having label l. For simplicity, in the fol-
lowing examples we assume all attributes share a common
domain V, so that we can use a single function generically
called attV al to associate attribute names to their values.
For the same reason, from now on we will omit types from
the define clause of our rules.

Using the elements defined above, a generic TESLA rule,
in the form shown in Section 4.2, is translated into the fol-
lowing TRIO formula (we omit the translation of the con-
suming clause, as it will be addressed later):

Alw ∀l1, .., lm ∈ L, ∀n1, .., nn ∈ N

2Notice how labels are only required to translate TESLA
rules into TRIO formulas, while they do not appear inside
the TESLA language, which operates at a higher level of
abstraction.

((Occurs(CE, lab(r, {l1, .., lm})) ↔ Pattern) ∧
(Pattern → attV al(lab(r, {l1, .., lm}), n1) = f1) ∧
(Pattern → attV al(lab(r, {l1, .., lm}), nn) = fn))

Where N is the set of all natural numbers and r ∈ N rep-
resents a unique identifier for the translated TESLA rule,
while l1, .., lm ∈ L are the labels of all event notifications
captured by Pattern and n1, .., nn are the attribute names
for the event type CE. The TRIO formula asserts that,
in every instant of time in which Pattern becomes true, an
event notification of type CE occurs, whose label is defined
by the lab function applied to the number of the rule r and
the set of labels of all event notifications captured by the
pattern (and viceversa). The formula also specifies the val-
ues for the new event’s attributes using the functions defined
in the corresponding TESLA rule.

4.4 Valid patterns
In the discussion so far we left unspecified the inner struc-

ture of a pattern; we now introduce all operators used in
TESLA to define valid patterns.

Event occurrence. The simplest type of event pattern rep-
resents the occurrence of a single event, possibly satisfying a
set of constraints. As an example consider the following re-
quirement: generate an overflow notification when the level
of water in a river overcomes 20; the notification must in-
clude the name of the river. This can be translated into the
following TESLA rule:

define Overflow(Name)

from WaterLevel(Level > 20) as WL

where Name = WL.Name

As the example shows, TESLA puts the constraints over
the content of an event into parentheses after the type of
the event. In this case a single constraint is needed but
TESLA accepts conjunctions of constraints as well. To ac-
cess the field of an event TESLA uses a dot notation event-
name.attribute-name. A name is associated to an event us-
ing the as keyword. When only an event of a given type is
present in the pattern, like in our example, it is also possible
to omit the as clause and use the event type as the name of
the event. We can also split the type of the selected event
from the constraints on its attributes; for example the from
clause of the previous formula could be written as Water-
Level() as WL and WL.Level>20.

Translating in TRIO rules involving single events is easy.
Notice that to keep formulas more compact, here and in the
following we assume all free variables to be universally quan-
tified at the outermost level and all formulas to start with
the Alw operator, which we omit. Using these conventions
we provide the translation of a general rule selecting a single
event:

define CE(Att1, .., Attn)

from SE(Attx op V alx)

where Att1 = f1, .., Attn = fn ,

(Occurs(CE, lab(r, {l1})) ↔
(Occurs(SE, l1) ∧ attV al(l1, Attx) op V alx)) ∧
(Occurs(SE, l1) ∧ attV al(l1, Attx) op V alx) →
(attV al(lab(r, {l1}), Att1) = f1 ∧ .. ∧
attV al(lab(r, {ln}), Attn) = fn)



To capture the meaning of this formula, consider the sit-
uation in which two different events of type SE, A and B,
occur at the same time. As the two events necessarily have
different labels, lA and lB , to satisfy the formula above two
different CE notifications must be generated, having labels
lab(r, {lA}) and lab(r, {lB}). The two notifications are guar-
anteed to be distinct (i.e. to represent different event occur-
rences), as the lab function is injective.

Event composition. To capture the occurrence of several,
related events, TESLA provides three event composition op-
erators: each-within, first-within, and last-within. All event
composition operators bind the occurrence of an event to the
occurrence of another one, introducing a detection window.
Using the terminology introduced in Section 2 we can say
that they differ from each other according to the selection
policy they define. As an example, consider the following
rules:

define Fire(V al)

from Smoke() and

each Temp(V al > 45) within 5min from Smoke

where V al = Temp.V al

define Fire(V al)

from Smoke() and

last Temp(V al > 45) within 5min from Smoke

where V al = Temp.V al

Both rules define the Fire event from Smoke and Temp.
The first rule leads to notify a Fire event for each Temp
event higher than 45 occurred within 5 minutes from the
smoke detection (if any). We say that the each-within oper-
ator defines a multiple selection policy as it uses any avail-
able Temp notification in a given time window. The second
rule, instead, creates a single Fire notification by selecting
only the latest Temp event higher than 45 occurred within
5 minutes from the smoke detection. The first-within oper-
ator exhibits a similar behavior, by selecting the first event
in the specified time interval. We say that the last-within
and first-within operators define a single selection policy as
they force the selection of at most one element. The formal
definitions of all event composition operators are shown be-
low (for space reasons we omit the attribute constraints and
assignments):

define CE from A and each B within x from A ,

Occurs(CE, lab(r, {l0, l1}) ↔
(Occurs(A, l0) ∧ WithinP (Occurs(B, l1), T ime(l0), x))

define CE from A and last B within x from A ,

Occurs(CE, lab(r, {l0, l1}) ↔
(Occurs(A, l0) ∧ WithinP (Occurs(B, l1), T ime(l0), x)

∧ ¬∃t ∈ (Time(l1), T ime(l0)] Past(Occurs(B, l2), t)

∧ (¬Past(Occurs(B, l3), T ime(l1)) ∧ l3 > l1))

define CE from A and first B within x from A ,

Occurs(CE, lab(r, {l0, l1}) ↔
(Occurs(A, l0) ∧ WithinP (Occurs(B, l1), T ime(l0), x)

∧ ¬∃t ∈ [x, T ime(l1)) Past(Occurs(B, l2), t)

∧ (¬Past(Occurs(B, l3), T ime(l1)) ∧ l3 < l1))

Here we used the time dependent function T ime, which
takes a label as argument and returns the occurrence time
of the event having that label with respect to the current

time, left implicit. Using such function, the definition of
the each-within operator is straightforward: it only adopts
the WithinP temporal operator, binding CE notifications to
each B event found in the valid time interval. The definition
of last-within and first-within operators introduce an addi-
tional constraint imposing no B events to occur after (resp.
before) the selected one in the defined time interval. Notice
that to provide a unique order between events in presence of
simultaneous occurrences, we assume an ordering between
labels.

T(48)t = 1

t = 2

t = 3

t = 4

T(48) T(50)

T(48) T(50) T(40)

T(48) T(50) T(40) S

Figure 3: A possible history of event occurrences

To better understand the difference between single and
multiple selection operators, consider again the two TESLA
rules described above. We show an example of event his-
tory in Figure 3. S represents a Smoke event, while T(n)

represents an event of type Temp (n being the measured
temperature). When at t=4 a Smoke event is detected, the
rule that uses the each-within operator combines it with ev-
ery Temp event greater than 45, which result in two differ-
ent Fire notifications. On the contrary, the rule that uses
the last-within operator results in a single Fire notification,
that combining the Smoke event with the latest Temp event
greater than 45 (i.e. the one received at time t=2).

TESLA also offers a generalized version of the first-within
and last-within operators, called k-first-within and k-last-
within. They can be used to capture the second, third, etc.
event occurrence from the beginning (resp. end) of a speci-
fied interval. The formal definition of the semantics of these
operators is omitted as it can be easily derived from the
definition of the basic single selection operators.

As a final remark, notice that TESLA allows the definition
of rules that combine multiple composition operators; they
can be connected in series, defining chains of event occur-
rences; or in parallel, allowing more event occurrences to be
bound to a single one. The rule below shows both options:

define D()

from A() and each B() within 5min from A and

last C() within 3min from A and

last D() within 6min from B and

first E() within 2min from D and

E within 8min from A

Notice, in particular, the use of the within operator in the
last line, which introduces an additional timing constraint
for an already defined event E.

Parameterization. In Section 2 we introduced parame-
terization as one of the required features in an event spec-
ification language. As an example, consider again the rule
about Fire notifications as defined through the each-within
operator in the previous section. Knowing that a Smoke and
a Temp events occurred within 5 minutes may be meaning-
less if we don’t know whether the two events come from
the same area. To express similar relationships, TESLA in-
troduces parameters through the $ operator. Suppose that
both Temp and Smoke events have an attribute called Area:



the following rule exemplifies the use of parameters to force
the two events of interest to come from the same area:

define Fire(V al)

from Smoke(Area = $x) and

each Temp(V al > 45 and Area = $x)

within 5min from Smoke

where V al = Temp.V al

Defining the semantics of parameters in TRIO is straightfor-
ward, we simply add one or more constraints on the values of
attributes. For example, the rule above requires attV al(l0,
Area) = attV al(l1, Area) where l0, l1 are the labels of the
selected Smoke and Temp events.

Theorem: Uniqueness of selection. As mentioned at
the very beginning of this section, all TRIO formulas used so
far are correct under the assumption that a set of events can
be selected by a given rule only once. We call this assump-
tion: uniqueness of selection. Together with the adoption
of an injective function to define labels, it makes it impossi-
ble to generate different events sharing the same label. As
the operators described so far define all the event selection
strategies allowed in TESLA, we are now ready to prove that
the uniqueness of selection assumption is satisfied3.

Proof. All TESLA rules joins the occurrence of a (com-
plex) event to the occurrence of a pattern of (simpler) events,
one of which must occur at the same time of the complex
one, while the others occur in the past. This guarantees that
a given rule r is satisfied by a set of events E only once, at
time t. In fact, future evaluations of the same rule r at time
t1 > t would require at least a new event e to occur at eval-
uation time t1. On the other hand, since rules only refer
to current and past events, e cannot be part of E, so the
pattern of events satisfying r at t1 must differ from E.

Timers. Several application domains require rules to be
evaluated periodically. TESLA supports periodic rules us-
ing special events called timers. As an example, we may
require a rule to be evaluated only at 9.00 of Friday by us-
ing T imer(H = 9, M = 00, D = Friday) in its from clause.
This approach keeps the syntax of the language simple, using
a uniform approach for both reactive and periodic rules, and
it does not change the semantics of rules (without impacting
the uniqueness of selection property).

Negation. Applications often need to reason not only about
the events occurred, but also about those that did not oc-
cur. As an example, we could detect a fire when Temp and
Smoke events are detected in the same area in absence of
Rain. To deal with similar cases, TESLA introduces the not
operator, which defines an interval of time in which a given
event must not occur. Such interval can be defined in two
ways: using two events as the interval bounds or using a
single event together with the duration of the interval. The
following rules introduce the two cases:

define Fire(V al)

from Smoke(Area = $x) and

each Temp(V al > 45 and Area = $x)

3In the remainder of the paper we present new operators
that extend the expressiveness of TESLA. None of them,
however, introduces new selection mechanisms: at most they
add new constraints, reducing the set of complex events
which may occur. Accordingly, none of them influences the
uniqueness of selection.

within 5min from Smoke and

not Rain(Area = $x) between Temp and Smoke

where V al = Temp.V al

define Fire(V al)

from Smoke(Area = $x) and

each Temp(V al > 45 and Area = $x)

within 5min from Smoke and

not Rain(Area = $x) within 5min from Smoke

where V al = Temp.V al

The semantics of these two forms that the not operator
may assume is defined below. Notice that the first syntax is
allowed only when the relative order between the two events
defining the interval of time is known. This happens when
both events belong to a common chain of event occurrences.

define D from A and each B within x from A

and not C between B and A ,

Occurs(D, lab(r, l0, l1)) ↔
(Occurs(A, l0) ∧ WithinP (Occurs(B, l1), x) ∧
¬∃t ∈ [Time(l0), T ime(l1)) (Past(Occurs(C, l2)), t))

C when A and not B within x from A ,

Occurs(c, lab(r, l0)) ↔ (Occurs(A, l0) ∧
¬∃t ∈ [Time(l0), T ime(l0) + x) (Past(Occurs(B, l1)), t))

Event consumption. As discussed in Section 2, one of
the main limitations of existing CEP languages is the lack
of customizable event selection and consumption policies.
While the xxx-within operators introduced so far allow users
to adopt the preferred event selection policy, TESLA uses
the consuming clause to deal with event consumption, allow-
ing users to specify the selected events that have to become
invalid for future detections (by the same rule). As an ex-
ample, consider the following rule:

define Fire(V al)

from Smoke() and each Temp(V al > 45)

within 5min from Smoke

where V al = Temp.V alue

consuming Temp

It consumes all selected Temp events, so a new Smoke would
not fire the rule until a new Temp (followed by a further
Smoke) happens.

To define the semantics of rules that include the consum-
ing clause, we introduce a new time dependent TRIO pred-
icate called Consumed. Given a rule identifier r and a label
l, Consumed(r,l) remains false until the event with label l
is consumed by the rule r, and it holds true after event
consumption. Formally, we ask the Consumed operator to
satisfy the following properties:

Alw ∀l ∈ L, ∀r ∈ N
(Consumed(r, l)→ ∀ t > 0, Futr(Consumed(r, l), t))

Alw ∀l ∈ L, ∀e, r ∈ N, ∀S
((¬∃t > 0 (Past(Occurs(e, lab(r, S), t))) ∧ l ∈ S)

→ ¬Consumed(r, l))

The former guarantees that once an event with label l has
been consumed by a rule r, it always remains consumed in
the future (w.r.t. r). The latter guarantees that if an event
e has not (yet) been captured by a rule r (i.e. it is not



part of a set of labels S selected by the rule in the past),
it cannot be considered as consumed w.r.t. r. To show
how the Consumed predicate can be used to formalize the
semantics of rules including a consuming clause, we provide
the translation of the TESLA rule above in TRIO:

Occurs(Fire, lab(r, {l1, l2})) ↔ (Occurs(Smoke, l1)

∧ WithinP (Occurs(Temp, l2), T ime(l1), 5) ∧
attV al(l2, V alue) > 45 ∧ ¬Consumed(r, l2))

(Occurs(Smoke, l1) ∧
WithinP (Occurs(Temp, l2), T ime(l1), 5) ∧
attV al(l2, V alue) > 45 ∧ ¬Consumed(r, l2)) →
∀t > 0 Futr(Consumed(r, l2), t)

The first formula differs from the standard translation used
so far as it requires all events appearing in the consuming
clause (i.e. Temp) not to be consumed at evaluation time.
The second specifies that, if at time t the pattern is satis-
fied selecting the Temp event with label l2, such event has
to be considered consumed in the future. Using the con-
suming clause together with single selection operators it is
possible to define rules that always capture a specific event
(e.g. the first, or the last) among non consumed ones only.
To the best of our knowledge no other languages based on
patterns are expressive enough to define similar rules. Also
notice that event consumption is valid only within a rule.
We think that this semantics is the most natural for a CEP
system, in which multiple rules use the same event notifica-
tions independently, possibly with different aims. Defining a
global consume operator would be straightforward, however
we preferred not to introduce it as we think that it would
have made rule definition and management a harder tasks.

Aggregates. The importance of aggregates has been dis-
cussed in Section 2. Aggregates apply a function to a set of
values S to generate a new value v. TESLA allows v to be
used wherever a value is allowed; in particular v can be as-
signed to an attribute of the complex event being defined or
it can be used inside the constraints that select the relevant
events. TESLA aggregates capture values from events in a
specified time interval. As for negations, time intervals can
be specified through the occurrence of two events or through
a single occurrence plus the duration of the interval. The
following examples show the two cases:

define AvgTemp(V al)

from Timer(M%5 == 0)

where V al = Avg(Temp().V alue)

within 5min from Timer

define HighV al(Name, V al)

from Stock(Name = $y, V al = $x) and

last Opening() within 1day from Stock and

$x > Avg(Stock(Name = $y).V al)

between Opening and Stock

where V al = S.V al, Name = S.Name

The first rule is evaluated periodically (every 5 minutes) and
generates an AvgTemp notification embedding the average
value of temperature readings in the last 5 minutes. The
second rule generates a new HighVal notification when the
value of a Stock overcomes the average value computed from
the last Opening.

The following TRIO formula provides the semantics for a
generic aggregate function Fun applied to the attribute Val

of events X occurred between A and B. The formula defines
a Set including all values of attribute Val in events of type
X occurred between A and B. Formally Set is defined as a
set of label-value couples, in such a way that the same value
coming from n different events is considered n times. The
function Fun uses values in Set to produce the result.

Fun(X.V al) between A and B = Y ,

∀ Set (∀x(x ∈ Set ↔ ∃l ∈ L(x =< l, attV al(l, V al) >

∧ withinP (Occurs(X, l), T ime(B), T ime(A))))

→ Fun(Set) = Y )

Hierarchies of events. Most languages for CEP do not
provide a separation between event definition rules and users
subscriptions; subscribers deploy so called composite sub-
scriptions that embed the pattern of events they are inter-
ested in. While this approach has no impact on the expres-
siveness of the language, in our opinion it makes definition
of rules more difficult, as it does not allow complex events to
be reused. On the contrary, TESLA enables complex events
defined through a rule to be used inside other rules; this
way users may easily create very expressive hierarchies of
events. We think that this approach better fits the nature
of many applications in which sources provide a high volume
of low level information items which need to be filtered and
combined at different logical levels to produce results for
the final users. As an example, consider a weather forecast
application: sensors provide information about their loca-
tions and the temperature they read. As a first step, a rule
manager may define an average temperature event that is
generated every 5 minutes and include all the readings com-
ing from a given area. Then, these events can be combined
into patterns defining temperature trends. Finally, trends
can be used together with other data (e.g. about wind) to
provide weather forecast. Notice that a correct definition of
hierarchies require no circular dependencies to exist between
rules. This constraint cannot be verified directly inside the
TESLA language, as it requires knowledge that is outside
the scope of single rules, however it can be easily checked by
a CEP system at rule deploy time.

Iterations. Several existing languages for CEP define ad-
hoc operators to express bounded or unbounded iterations
of patterns (Kleen closures) [20, 8, 21]. Such operators may
be useful to detect trends: as an example they enable pat-
terns involving continuously increasing values for a stock.
A precise definition of iteration operators has to take into
account a number of aspects: selection and consumption
policies, minimum and maximum number of iterations, re-
lations between attribute values, termination criteria, etc.,
which complicate the language, both syntactically and se-
mantically. On the other hand TESLA, with its ability to
define hierarchies of events and to adopt different selection
and consumption policies for different rules, is expressive
enough to not require special operators to capture itera-
tions. A great advantage in term of elegance and simplicity.
As an example, suppose we want to capture every iteration
of events of type A, where the attribute Val never decreases,
to notify an event B that contains the number of A that
are part of the iteration. This is captured by the following
TESLA rules:

define RepA(Times, V al)

from A()

where Times = 1 and V al = A.V al



define RepA(Times, V al)

from A($x) and last RepA(V al ≤ $x) within 3min

from A

where Times = RepA.T imes + 1 and V al = $x

consuming RepA

define B(Times)

from RepA()

where Times = RepA.T imes

Notice how TESLA provides a high degree of flexibility.
For example, it is easy to modify the event selection and
consumption policies or content and timing constraints in
the above rules to change the events actually captured, e.g.,
to capture only the longest iteration occurred.

5. EVENT DETECTION AUTOMATA
Processing of TESLA rules involves detecting patterns of

interest from the history of events and generating the cor-
responding (complex) events. Different techniques could be
used to achieve these goals: here we present an efficient de-
tection algorithm based on automata, which evaluates events
incrementally, as they occur.

5.1 Ordering in TESLA rules
TESLA rules define a partial order among the events to

be selected. Consider for example the following rule R:

define CE()

from A(V a > 1)

and each B(V b > 2) within 2 min from A

and each C(V c < 3) within 4 min from A

and each D(V d = 5) within 4 min from B

and D within 5 min from C

and each E() within 3 min from B

The ordering among events captured by this rule is repre-
sented by the ordering graph in Figure 4, where an arrow
from an event e1 to e2 means that e1 cannot occur after e2.
Ordering graphs capture the fact that some events are bound

D C

B

A

E

Figure 4: Ordering relations graph

(directly or indirectly) to each other (e.g., D precedes C),
while others are not (e.g., C may occur either before or after
B). Ordering graphs are acyclic, as it is not possible to spec-
ify satisfiable rules with circular timing dependencies; and
they are rooted, as TESLA rules force all events to depend
directly or indirectly from a unique reference event occur-
ring at evaluation time. A valid pattern satisfying a TESLA
rule may start with any of the events that are leaves in the
respective ordering graph (e.g., D or E in our example) and
it must contain all the events in the graph in the correct
order (i.e., the partial order captured by the graph).

5.2 Event detection
To build the event detection automata for a rule r, we

start from the ordering graph of r and we create a different,

linear, model of automaton for each path starting from a leaf
and arriving to the root of the graph. As shown in Figure 5,
each transition from state s1 to state s2 is labeled with the
set of constraints that an incoming event of type s2 has to
satisfy to trigger the transition, plus the maximum time for
the transition to be triggered. We capture the fact that dif-
ferent paths in the same ordering graph g share one or more
nodes by joining the corresponding states in the automata
models derived from g. This is shown using dashed lines in
Figure 5. Notice how we used the term “automaton model”
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Figure 5: Event detection automata for Rule R

and not simply “automaton” on purpose. Indeed, as we will
better explain later, different instances of a single model are
created during event processing, in order to capture every
possible sequence of events that satisfy a given rule.

Detecting simple sequences. To describe the behavior
of event detection automata we start by considering those
rules that capture a single sequence of events, like the one
below:

define CE()

from A(V a > 1)

and each B(V b > 2) within 2 min from A

and each E() within 3 min from B

which is a simplified version of rule R considering only the
sequence of events captured by automaton M1 (see Fig-
ure 5). For each of these rules we have a different linear
automaton model like M1. Event processing starts by cre-
ating a single instance for each of these automata, then, for
each incoming event, it creates new automata instances, or
moves existing ones from state to state, or deletes some of
them. More precisely, an automaton instance A in a state
X reacts to the detection of an event e that satisfies the
constraints for the transition exiting X, by firstly duplicat-
ing itself, creating a new instance A1, then using e to move
A1 to the next state (while A remains in state X). Those
events that do not satisfy currently enabled transitions are
simply ignored, while automata instances are deleted if they
are unable to progress within the maximum time associated
to each transition4. Finally, we trigger a rule when an in-
stance of the corresponding automaton model arrives to its
accepting state, represented with a double circle in the fig-
ures above.

As an example of how this algorithm works, consider our
previous rule, resulting in automaton model M1. Figure 6
shows what happens when the sequence of events at the
bottom is captured. Initially (time t = 0) there is a single
instance Aut of M1, in its initial state, waiting for events of
type E. Since this instance will never change, we simplified
figure by only drawing it at time t = 0. At time t = 1 an
event E1 occurs, which satisfies all the constraints to enter

4Notice that an automaton in its initial state cannot be
deleted, as transitions exiting the initial state do not include
timing constraints.



state E. Consequently, Aut duplicates itself, creating Aut1,
which uses event E1 to move to state E. We record this fact
by labeling the fired transition with the triggering event E1
and the time of occurrence, i.e., E1@1. At time t = 4, a
new instance of E is captured, resulting in a new duplicate
of Aut, Aut2, which moves to state E. At time t = 5 Aut1
has been deleted, since no events of type B had occurred in
the 3 minutes following E1, while the occurrence of B1 was
captured by Aut2 which spawned Aut21 in state B. At t = 6
the new event B2 resulted in creating a new copy Aut22 of
Aut2 in state B. Finally, at time t = 8, when A1 occurs,
Aut2 and Aut21 have been deleted, while Aut22 reacts to the
new event by spawning Aut221, which, using A1, arrives at
the final state A, recognizing the valid sequence (E2, B2,
A1).
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t = 4 Aut1 E
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t = 5 Aut2 E
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Figure 6: An example of sequence detection

Detecting complex patterns. Once clarified how event
processing proceeds for simple rules involving single sequences
of events, we are ready to explain what happens in the gen-
eral case. In presence of rules like Rule R above, process-
ing is complicated by the fact that several automata models
share one or more states, as shown by dashed lines in Fig-
ure 5. Take for example the relation involving states B in
automaton models M1 and M2: it represents the fact that
a sequence captured by an instance of M1 can be valid for
the whole rule R only if it shares an event B with at least
an instance of M2. To capture this semantics, we modify
the behavior of event processing as follows. Consider an au-
tomaton instance A1 with model M1, using an event x to
move to a state X. Suppose state X in model M1 is con-
nected with states X in models M2, .., Mn. When A1 arrives
at state X, if at least an automaton instance for each model
M2, .., Mn exist, which used x to move to state X, then the
transition is accepted. Otherwise A1 is deleted. In fact, even
if A1 could recognize a valid sequence s, we are sure event
x in s would not satisfy some of the constraints in models
M2, ..., Mn, so s cannot satisfy the entire rule.

Event selection and consumption. By creating new au-
tomaton instances for each accepted event, the algorithm
described above selects all events that satisfy the timing con-

straints defined in a rule. This is suitable when the rule is
defined only through the each-within operator, which results
in a multiple detection semantics. However, when operators
like first-within and last-within are used, which perform sin-
gle selections, only a subset of all possible patterns has to be
considered. On the other hand, extending our algorithm to
capture the semantics of these operators is trivial. In fact,
when an automaton instance A arrives in its accepting state
using an event e, it is sufficient to compare the pattern it
detected with those of all other instances using e. All pat-
terns that do not match the selection policies stated by the
corresponding rule (e.g., patterns including an event that
is not the “first” when the rule used a first-within operator)
are discarded. Similar issues result from event consumption:
as already consumed events cannot participate in new pat-
terns, all automaton instances that used an event e to arrive
to their current state are immediately deleted as soon as e
is consumed.

Negation. TESLA includes two forms of negations for a
specified event e: the first requires e not to occur between
other two events e1 and e2, while the second requires e not to
occur in a given period before an event e3. Encoding the first
kind of negation in our algorithm is straightforward: when
an automaton instance A arrives at a state e1 waiting for
event e2 to proceed, we simply delete A if e occurs before
e2. The second kind of negation is instead implemented
using a timer: suppose we don’t want e to occur in the 5
minutes before e3. Every time an event e is detected a new
timer of 5 minutes is set; no new events of type e3 will be
considered while the timer is active.

Aggregates. Aggregate functions require our algorithm to
store the set of values they will be applied to. Time intervals
from which values are extracted are defined exactly as in
negations: using two events e1 and e2 as bounds or defining
a time span t before the occurrence of an event e3. In the
first case bounds are well defined: we can start recording
values of interest when an automaton instance arrives at
state e1 and stop when it moves to state e2. In the second
case we don’t know when e3 will occur, so we need to keep
track of all values of interest registered in a time period long
t. When an occurrence of e3 is detected, the recorded values
are used as input to the aggregate function.

Performance. The expressiveness of TESLA makes it im-
possible to set a theoretical upper bound on the number of
events that a detection engine needs to keep in memory for
processing. Consider for example the following rule:

define CE()

from A() and each B() within 10 min from A

To process it, we need to store all incoming events of type
B occurred in the last ten minutes. Since the rate of those
events is not known a priori, we cannot set a limit on stor-
age. Moreover, as discussed before, each incoming event
that causes a state transition on an automaton instance I
also duplicates I. In the worst case, all automata instances
are affected by the arrival of an event and consequently the
overall number of deployed instances may grow exponen-
tially. While this is bad, the same results hold for all lan-
guages that allow users to express time bounded sequences
of events [3]. To avoid this potential explosion of the state
space, it would be necessary to strongly reduce the expres-
siveness of TESLA, for example forcing the sequence con-



struct to capture only adjacent events as in [8].
On the other hand, the average case is not necessary the

worst one. To measure the performance of our detection al-
gorithm in a practical situation we are implementing it in
C++. While the system is not finished, yet, we tested a first,
unoptimized version of the prototype against a challenging
synthetic workload, in which every input event caused the
duplication of many automata and the detection of a large
number of complex events. To stress our algorithm we de-
ployed a large number of rules and forced a constant rate of
input events. Our preliminary results are encouraging: us-
ing an Intel Core2 processor running at 2.53 GHz we could
process 5000 rules (25000 automata states) with a constant
input rate of 100 events/s with about 98% of cpu usage and
less than 700MB RAM usage. In this scenario we registered
a peak of more than 1.5 million automata instances, which
resulted in detecting more than 62000 events/s.

Note that these results were obtained using a prelimi-
nary, single threaded prototype; however, since automata
capturing different rules are completely independent from
each other, our algorithm can be easily parallelized. Prelim-
inary tests in this direction show that, given a fixed input
rate, the maximum number of rules that can be evaluated
without loss of information increases linearly with the num-
ber of threads and processors.

6. RELATED WORK
The problem of defining a suitable language for process-

ing information flows has been addressed in several works. It
first emerged in the field of active database systems, where
Event Condition Action (ECA) rules were used to specify
reactive behaviors. Some of the languages for defining ECA
rules included operators for event composition. Examples
are HiPac [14], Samos [17], Sentinel [10] and Ode [18]. In-
terestingly, some of these systems addressed the problem
of event selection by allowing users to choose among a set
of predefined policies; however, languages were not flexible
enough to enable the definition of new policies.

Many languages for processing flows of information have
been developed by the Data Stream Processing community.
Examples are CQL [5], ESL [7], and StreaQuel [11]. All of
them share the same processing paradigm, in which windows
operators are used to split input streams into parts, which
are processed using declarative, SQL like, languages to build
new output streams. Processing is usually performed incre-
mentally, by connecting several rules together, so that re-
sults produced by a rule become input for others. Some
systems explicitate this model by offering graphical tools,
in which predefined rules and user defined ones are seen
as building blocks to be combined by drawing the flow of
information from block to block [1, 24]). As discussed in
Section 2, this approach does not naturally allow to capture
the kind of complex events we focus in this paper.

Most recent proposals coming from the Complex Event
Processing community [28, 30, 25, 21, 8] offer relatively sim-
ple languages, which usually do not include customizable
event selection and consumption policies, complete support
for aggregates or reuse of patterns to form hierarchies of
events. Remarkable exceptions are represented by the pat-
tern languages defined by Sase+ [20, 3] and Amit [2], which
present many similarities with our approach. Sase+ defines
flexible event selection strategies, while offering a precise
semantics for all operators in terms of NFA automata; it

also supports parameterization, negation, and aggregates.
However, Sase+ rules can specify only single sequences of
events, while TESLA may define complex patterns that in-
clude different sequences. Moreover, selection policies are
not completely customizable in SASE+ and apply to en-
tire rules, rather then to single operators, as in TESLA.
Finally, SASE+ does not consider event consumption and
periodic evaluation. Amit introduces the concept of lifespan
to specify the valid period in which a pattern of events can
be captured. As in TESLA, different lifespans may be con-
currently open to capture different occurrences of an event.
Amit also provides customizable event selection and con-
sumption policies. On the other hand, Amit patterns cannot
include a number of timing constraints defined in TESLA,
especially those including negations, and it does not include
aggregates. Finally, Amit operators and their compositions
are not formally defined, making the behavior of some rules
potentially unclear.

While different algorithms for event processing have been
proposed, the automata paradigm is the most common in
existing systems [8, 3, 21]. To the best of our knowledge,
no other proposals present in the literature allow to cap-
ture complex patterns that include and combine several se-
quences of events, like our event detection automata. More-
over, each existing automata-based algorithm is tailored for
a specific language having its own selection policies; for this
reason no one is general enough to capture the entire expres-
siveness of TESLA, which provides a high degree of freedom
for rule definition.

Finally, there are a number of studies on underlying event
and time models for complex event processing systems [29,
31], which provide a teoretical exploration on the nature of
events.

7. CONCLUSIONS
In this paper we presented TESLA, an event specifica-

tion language for CEP. TESLA provides a simple and com-
pact syntax while offering high expressiveness and flexibil-
ity: it supports content-based event filtering and allows to
easily capture complex relations among temporally related
patterns of events. It supports parameterization, negations,
and aggregates, offering standard and periodic rules within a
single framework. It also clearly separates the role of rules,
used to define complex events, from the role of subscrip-
tions, used to express the interests of sinks, allowing rules
to be easily combined together in strongly expressive hi-
erarchies. All these features, together with the ability of
specifying fully customizable policies for event selection and
consumption, allows TESLA to easily define event iterations
without requiring an explicit Kleene operator, i.e., keeping
the language syntax simple and elegant. Moreover, TESLA
is among the first languages for CEP to offer a formal se-
mantics, expressed using a temporal logic. This eliminates
the ambiguities typical of most other languages and allows
system designers to formally check the correctness of their
implementation. Finally, we have shown how TESLA rules
can be efficiently interpreted, introducing an event detec-
tion algorithm based on automata. As a next step, we are
currently integrating TESLA with RACED [12], our proto-
col for distributed event processing. We are confident that
this would allow us to combine language expressiveness with
system scalability.
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