
Tutorial: Taming Velocity and Variety Simultaneously in
Big Data with Stream Reasoning

Emanuele Della Valle, Daniele Dell’Aglio, Alessandro Margara
DEIB – Politecnico di Milano

[emanuele.dellavalle, daniele.dellaglio, alessandro.margara]@polimi.it

ABSTRACT
Many “big data” applications must tame velocity (processing data
in-motion) and variety (processing many different types of data)
simultaneously.

The research on knowledge representation and reasoning has
focused on the variety of data, devising data representation and
processing techniques that promote integration and reasoning on
available data to extract implicit information. On the other hand, the
event and stream processing community has focused on the velocity
of data, producing systems that efficiently operate on streams of data
on-the-fly according to pre-deployed processing rules or queries.
Several recent works explore the synergy between stream processing
and reasoning to fully capture the requirements of modern data
intensive applications, thus giving birth to the research domain of
stream reasoning.

This tutorial paper offers an overview of the theoretical and tech-
nological achievements in stream reasoning, highlighting the key
benefits and limitations of existing approaches, and discussing the
open challenges and the opportunities for future research. The paper
mainly targets researchers and practitioners in the area of event
and stream processing. The paper aims to stimulate the discussion
on stream reasoning and to further promote the integration of rea-
soning techniques within event and stream processing systems in
three ways: (i) by presenting an active research domain, where
researchers on event and stream processing can apply their exper-
tise; (ii) by discussing techniques and technologies that can help
advancing the state of the art in event and stream processing; (iii) by
identifying the open problems in the field of stream reasoning, and
drawing attention to promising research directions.

CCS Concepts
•Information systems→ Data management systems;

Keywords
Stream Reasoning, Stream Processing, Reasoning, Event Processing,
Complex Event Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’16, June 20 - 24, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4021-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933267.2933539

1. INTRODUCTION
Many “big data” applications must tame velocity (processing data

in-motion in real-time or near real-time) and variety (processing
many different types of data) simultaneously. The goal is to timely
provide access to implicit and explicit knowledge that can be ex-
tracted from the data in-motion, possibly joined with static data
at-rest. Examples come from many scenarios, like the Internet of
Things, social media analytics and smart cities.

The researchers on knowledge representation and reasoning, in
particular the fields of Semantic Web [57] and Ontology-based Data
Integration [43], focused on the heterogeneity of data (the variety
aspect of big data). They devised data models such as RDF [24],
query languages such as SPARQL [34], modeling languages such
as OWL [36], and methodologies such as Ontology Based Data
Access (OBDA) [20], that ease data integration and enable access
to (potentially implicit) knowledge. Current solutions scale on the
size of data, but assume changes to occur at low frequencies, and
this clashes with the requirement of real-time processing.

On the other hand, the research on event and stream processing
has mainly focused on the velocity of data, producing software sys-
tems that efficiently operate on streams of data on the fly according
to some pre-deployed processing rules or queries [23]. This led
to the development of various data stream processing systems [9]
and Complex Event Processing (CEP) systems [46, 33] that effec-
tively deal with the transient nature of data streams, providing low
delay processing even in the presence of large volumes of input data
generated at a high rate.

All these systems are based on data models, like for example the
well known relational model, which allow the implementation of
ad-hoc optimizations to improve the processing. However, these
models also limit the processing to a predefined set of operations on
streams with a fixed structure.

A number of recent works explore the synergy between stream
processing and reasoning to capture both the real-time requirements
of modern applications and the heterogeneity of the data they con-
sider. This gave birth to the research field of stream reasoning [27].
After a few years of research with interesting investigations in the
field [47], we believe that the full potential of the stream reasoning
research still remains vastly unexplored.

This paper offers a detailed presentation of the theoretical and
technological achievements in stream reasoning, highlighting the
key ideas and benefits of existing approaches, and discussing the
open issues and limitations.

The paper aims to draw the attention of the experts on event and
stream processing to the field of stream reasoning, with the goal of
promoting further advancements in the area.

In particular, the paper provides the following contributions:
(1) An overview of event and stream processing systems; (2) An

introduction to the Semantic Web and to the technologies for reason-
ing on static data; (3) An overview of some use cases and scenarios
that motivate and guide the research on stream reasoning; (4) A
detailed presentation of the state of the art techniques and tools
for stream reasoning; (5) A critical discussion of the strengths and
limitations of current approaches and tools, with focus on the open
problems and potential research directions.

We believe that the content of this tutorial paper is relevant for
researchers on event and stream processing for two reasons: first, the
paper provides an overview of an active research domain where the
researchers can apply their expertise; second, the tutorial presents
reasoning techniques and technologies that they can use to advance
the research on event and stream processing.

The paper is organized as follows. Section 2 presents background
information on data stream and event processing, and on Semantic
Web technologies and reasoning. Section 3 discusses some use cases
that motivate the need for reasoning on streams of dynamic data.
Section 4 presents the state of the art approaches for stream rea-
soning, highlighting their focus, their benefits, and their limitations.
Section 5 presents a critical discussion of the open problems and
presents potential research directions. Finally, Section 6 concludes
the paper.

2. BACKGROUND
This section presents background information on the technologies

that mostly influenced the development of stream reasoning. In par-
ticular, stream reasoning builds on the results of two main research
areas: data and event stream processing (Section 2.1) and reasoning
(Section 2.2).

2.1 Data and Event Stream Processing
The research on data and event stream processing aims to an-

alyze streams of data on the fly to timely produce new results or
detect situations of interest based on a set of pre-deployed rules or
queries [23].

Solutions for event and stream processing typically target two
main requirements: high throughput, to manage large volumes of
input data, and low latency, to provide new results with minimum
delay. In other words, event and stream processing systems address
the velocity dimension of big data.

Two main models and approaches for stream processing have
emerged, namely data stream processing and complex event pro-
cessing.

2.1.1 Data Stream Processing
Data stream processing systems [9] provide processing abstrac-

tions to transform one or more input data streams into one or more
output data streams.

A classical processing model adopted in many data stream pro-
cessing systems is the CQL model [6], first defined in the Stanford
STREAM system [5]. CQL defines the processing tasks in terms
of the well known relational operators, and introduces additional
primitives to deal with the dynamic nature of the input data. CQL
comprises stream-to-relation primitives (windows) to isolate rel-
evant portions of each stream, traditional relational operators to
operate on the content of each window, and relation-to-stream oper-
ator to convert back the results of the processing into a data stream.
For instance, a window can be used to isolate the last 10 minutes
in two incoming streams, a join operator can be used within the
window to merge the two streams, and a relation-to-stream operator
can stream only newly generated data.

Recent proposals substitute the relational model with functional
programming abstractions to process streaming data. This approach

Wrapper

Data
source1

Wrapper

Data
source2

Wrapper

Data
source N

Mappings

Conceptual Integrated Model

[…]

Queries

Figure 1: Data integration systems

has received great attention with the advent of several open source
solutions designed for cluster environment, such as Spark Stream-
ing [71] and Flink [2].

Other stream processing systems specify the processing task as a
graph of operators [1]. Each operator consumes the input streams
and produces one or more output streams for other operators. Op-
erators can be either standard or custom, that is to say, defined
programmatically by the developer. Recently, this model has been
adopted to build scalable solutions that process large volumes of
data in cluster environment. For instance, Storm and Heron [39]
have been used as part of the Twitter infrastructure.

2.1.2 Complex Event Processing
Complex Event Processing (CEP) systems [46, 33] consider data

elements inside streams as timestamped event notifications, and
provide processing abstractions to capture patterns of interest in the
input event streams. Patterns predicate on the content and timing
relations among events.

Complex Event Processing systems differ in the way they repre-
sent time: some systems provide point semantics that assumes each
event to occur at a precise point in time, while others use interval
semantics that assumes each event to be valid in a time interval [70].

Different systems also offer different trade offs between expressiv-
ity and efficiency. Some systems adopt simple patterns that can be
translated into automata for efficient processing [18], while others
adopt more complex patterns, for instance based on logics [22, 3].

2.2 Reasoning for Data Integration
The problem of data integration has been studied for decades. The

same type of information can appear in different data sources with
different syntaxes, data structures and conceptual models, raising
the data variety problem at syntactical, structural and semantic level.

Most data integration systems adopt the architecture outlined in
Figure 1. A Conceptual Integrated Model (CIM) offers a vocabulary
of terms to use when issuing queries on the data sources as if they
were a single integrated database. Wrappers hide the differences
among data sources and logically expose them in a single data
model. Mappings couple the terms in the CIM to those used in the
wrappers1.

In the ’90s, the relational database schema languages were inves-
tigated as modeling languages for the CIM. Nowadays, all major
database vendors offer them to tame variety at syntactic and struc-
tural level. Starting from the 2000’s, Description Logics [8] were
studied as modeling languages for the CIM, and Ontology Based

1Mappings can assume multiple forms, i.e. Local-as-View, Global-
as-View and both [43]

Data Access (OBDA) became an accepted method to tame variety
at the semantic level (see [20] for a recent special issue on the topic).
In OBDA systems, a reasoner rewrites the queries issued against
the CIM into queries to the underlying data source, wrapped into
its query language. The answers to those wrapped queries can be
integrated to provide the answer. In addition, some reasoning can
be performed on the results of the rewritten queries before returning
the answers to the users. Recent works showed that DL-Lite [7] can
express queries to be rewritten over relational databases and directly
encoded in SQL, proving that the complexity of the conjunctive
query answering task is AC0.

Nowadays, when building an OBDA system, we can count
on Semantic Web standards. The Resource Description Format
(RDF) [24] can be used as the logical data model to represent infor-
mation in the wrapped data sources. The Ontology Web Language
(OWL) [36] can be use as ontological language for modeling the
CIM. R2RML [25] can be used as mapping language to describe
how to map a OWL ontology into a relational data schema. Dialects
of R2RML exist to map between RDF and tree- and graph-based
data models. Finally, SPARQL [34] can be used as query language
for RDF.

3. THE NEED FOR STREAM REASONING
Several modern data intensive applications need to deal with large

volumes of heterogeneous and dynamic data. Such applications need
to cope with the volume of input data, with the variety of data and
sources that expose it; and with the velocity, as data remains valid
for a limited amount of time and needs to be processed as soon as
possible to produce relevant results.

An example is represented by the domain of smart cities that aims
to process and understand the information relevant for the life of a
city and use it to make the city run better, faster, and cheaper [41,
62].

Smart grids [68] represent another scenario that requires data
monitoring and integration, situation detection, and (partially or
completely) automated decision making. The goal of smart grids
is to make current energy grids more efficient and sustainable by
collecting and interpreting information coming from different stake
holders, such as energy producers, grid operators, or appliance
manufacturers.

Finally, semantic analysis of social media [32] extends classic
connection analysis by enriching the relations between people and
concepts with semantic annotations. One of the goals of the analysis
of social media is to capture hidden relations between people and
concepts. In this scenario, it is interesting to detect not only the
current situation or context, but also the historical evolution of
relations over time.

These scenarios pose some challenging requirements that cannot
be easily satisfied with the classic solutions for data stream and
complex event processing and with reasoning engines for static data,
as presented in Section 2.

First, the above examples need to cope with large volumes of
data. For instance, in the context of smart cities, the sensors in the
city of Dublin currently produce every day about four to six GB of
data about the public transport [41], and in the future more sensors
will be deployed which will produce more complex data (e.g., HD
cameras). In the context of social media analysis, Facebook, at the
end of 2015, had 1.59 billion monthly active users.

Second, the scenarios require to tame velocity by processing
streams of data on the fly. On the one hand, the volume of data
is too large to be stored before processing. On the other hand,
applications demand for new results with small delay, to enable
informed decision making. For instance, Facebook users produce

Table 1: How stream processing (SP), Complex Event Process-
ing (CEP) and reasoning (OBDA) tame Big Data dimensions

Dimensions SP/CEP OBDA
Data Volume 3 3
Data Velocity 3 7
Data Variety 7 3
Data Veracity 3 7

on average 4.5 billions “like” daily and Twitter produces more than
7000 tweets per second.

Third, all scenarios aim to derive high level knowledge from low
level information. The presence of a suitable processing model to
express the processing tasks is one of the main challenges and needs.

Forth, producing valuable results require the integration of het-
erogeneous datasets, both static and dynamic, taming the variety
dimension of big data. For instance, data produced by different
social media have different data formats. In smart cities, the number
and types of deployed sensors continuously increases, and each of
them produces data with different content and format.

Finally, data can be incomplete or noisy. This is known in big
data as the veracity dimension. For instance, the sensors deployed
in a city can experience malfunctioning or provide incorrect or
inaccurate results. Thus, the processing model should be able to
verify the consistency of data and limit the production of incorrect
results.

4. THE STATE OF THE ART
This section reviews the state of the art approaches to stream

reasoning. First, Section 4.1 illustrates the intuition that makes
stream reasoning feasible. Next, given the heterogeneous nature of
the proposals in the field, we organize the remainder of the section
in four parts. Section 4.2 presents solution to apply event and
stream processing techniques to streams of RDF data. Section 4.3
presents approaches that explicitly target the reasoning process in
presence of streaming data. Section 4.4 presents approaches that
define formal models to process, query and reason over streams
of RDF data. Section 4.5 presents approaches that deal with the
veracity dimension of data streams.

4.1 The intuition
A fundamental problem of stream reasoning is the fact that many

relevant reasoning methods, for example for description logics,
cannot deal with high frequency data streams. While they try to
derive entailments with the available data, new incoming data piles
up. Thus, there is a trade off between the complexity of the reasoning
method and the frequency of the data stream the reasoner can handle.

The intuition to solve this problem stems from the observation of
a similar trade off between memory size and access time in computer
systems, which is solved using a memory hierarchy [61]. Stream
reasoning can be optimized to provide reactive answers by using
a hierarchy of processing steps of increasing complexity. Figure 2
illustrates this idea of cascading stream reasoners to process stream-
ing data. Technically, this intuition is supported by the possibility
to push processing steps down in the hierarchy to speed up reason-
ing and to complete the reasoning process at each layer by only
considering the results coming up from the layer underneath.

The lower levels are designed to cope with the volume and the
velocity of streaming data. These layers plays two roles: they
logically wrap raw data streams into an adequate data model —RDF
streams— and they provide the possibility to query RDF streams

Figure 2: The intuition of the feasibility of stream reasoning

using a continuous extension of SPARQL query language under
OWL2QL entailment regime applying the OBDA methods.

Only the portions of the raw streams that match the registered
queries are passed to the higher levels, where they arrive with a lower
volume and frequency. On the next higher level, relatively simple
but efficient reasoning methods, such as OWL2RL based reasoning,
are used to further process the result stream. Expressive reasoners
are adopted only at the top of the hierarchy, where the frequency of
change has been reduced significantly. Following this intuition, only
inference tasks that cannot be carried out at the lower layers of the
hierarchy are performed using more expressive reasoning methods.

4.2 RDF Stream Processing
The RDF stream data model is an extension of RDF. This section

overviews the main approaches for the continuous evaluation of
processing rules or queries on RDF data streams, which are typically
based on extensions of the SPARQL query language.

Most approaches inherit the query model of data stream process-
ing systems, and in particular of the CQL language: they offer
relations-to-stream operators such as windows to isolate the portions
of the input streams that are relevant for processing, relation-to-
relation operators to process the content of the streams, and relation-
to-stream operators to select some results of the processing and
append them to some output streams.

The main difference with respect to data stream processing sys-
tems is in the relation-to-relation operators. Data stream processing
systems adopt relational operators whereas RDF stream processing
adopts variants of the SPARQL query language, designed to work
with the RDF data model.

A few approaches adopt the model of Complex Event Processing
systems, and define the processing tasks in terms of rules that define
patterns of interest to be detected in the incoming RDF data streams.

C-SPARQL. C-SPARQL [15] is a language for continuous queries
over streams of RDF data that extends SPARQL by adding operators
inspired by the data stream processing model of CQL. The language
is implemented in the C-SPARQL engine that builds on top of
the Esper and Jena systems. Esper is responsible for executing
continuous queries over RDF streams, producing a sequence of RDF
graphs over time. Jena executes a standard SPARQL query against
each RDF graph in the sequence, producing a continuous result.
C-SPARQL offers a limited support to Complex Event Processing
temporal operators.

CQELS. CQELS [40] extends SPARQL with stream-to-relation
and relation-to-stream operators. Differently from the C-SPARQL
engine that delegates the processing to existing stream and SPARQL
engines, CQELS implements the query evaluation engine natively
to reduce the processing overhead. The CQELS engine dynamically
adapts to the changes in the input data by recompiling the query
plan to reduce the processing delay.

SPARQLstream. SPARQLstream [19] is an extension of SPARQL
that supports a larger set of streaming operators with respect to
C-SPARQL and CQELS. The language is implemented in a query
processor that adopts OBDA. It rewrites SPARQLstream queries in re-
lational algebra expressions extended with time window constructs,
optimizes them, and converts them in the language of a target stream
processing engine.

INSTANS. INSTANS [56] models a processing task as a set of
interconnected SPARQL queries. INSTANS performs continuous
evaluation of incoming RDF data against the compiled set of queries,
stores the results into intermediate data structures, and outputs new
results when all the conditions in the queries are satisfied. In this
sense, INSTANS does not require continuous operators to extend
RDF and SPARQL.

4.3 Reasoning on RDF streams
In this section, we introduce the state of the art approaches that

provide reasoning functionalities for RDF streams. Section 4.3.1
presents techniques for efficient materlization, which is the compu-
tation of the complete implicit knowledge that can be derived from
the explicit information present in RDF data streams. Section 4.3.2
presents works that extend the continuous evaluation of processing
rules or queries with reasoning capabilities.

4.3.1 Materialization and Incremental Maintenance
The term materialization refers to the problem of computing

all the implicit knowledge that can be derived from some given
data according to some ontology. The presence of streaming data
that changes frequently demands for techniques that incrementally
maintain the materialization.

Incremental maintenance approaches originate in maintenance of
materialized views in active databases [21, 60]. This work consid-
ers the problem of generating a materialized view and maintain it
incrementally between updates.

DRed. Volz et al. [67] propose a declarative variant of the DRed
algorithm [60] to incrementally maintain an ontological materializa-
tion. The algorithm works in three steps: (i) It overestimates the
deletions: starting from the facts that should be deleted, it computes
the facts that are deducted by them; (ii) It prunes the over-estimated
deletions by determining which facts can be rederived by other facts;
(iii) It inserts the new deducted facts that are consequences of added
facts into the materialization.

Streaming Knowledge Bases. Streaming Knowledge Bases [69]
is one of the earliest stream reasoning engines. Its approach is to
combine a stream processor with a reasoner: in fact, it relies on the
TelegraphCQ to efficiently process data streams, and on the Jena
rule engine to incrementally materialize the knowledge base.

DynamiTE. DynamiTE [66] proposes parallel processing tech-
niques to compute and maintain the materialization of a knowledge
base. In the case of additions, DynamiTE updates the materializa-

tion through a parallel evaluation of available axioms. In the case
of removal, DynamiTE deletes the explicit concepts and all the de-
rived concepts that are no longer valid. To quickly identify concepts
to be removed, the authors propose a novel approximate counting
algorithm that exploits the idea of counting the number of possible
ways in which a concept can be derived.

RDFox. RDFox [49] is an in-memory RDF store characterized by
high scalability and performance. Inference is performed through
a parallel datalog engine implementing an incremental reasoning
algorithm extending DReD. The idea behind this extension is to
reduce the number of overestimated deletions, by using backward
and forward reasoning to avoid the deletion of axioms that are going
to be re-introduced in the rederivation step.

Truth Maintenance System. Ren and Pan [54] investigate the
possibility to optimize Truth Maintenance Systems to perform ex-
pressive incremental reasoning in presence of frequent changes.
Differently from DRed variations introduced in the aforementioned
approaches, they adopt a graph to track dependencies between con-
cepts – the nodes of the graph. Addition operations generate new
nodes and edges in the graph, while removal operations are per-
formed by traversing the graph and recursively removing nodes that
become unreachable.

StreamRule. StreamRule [48] is similar in spirit, but it uses a
different reasoning technique, i.e., Answer Set Programming (ASP)
[44] declarative problem solving. StreamRule implements a two-
layer approach: the first layer is a stream processing engine that
acts as a filter to reduce the amount of data to be considered in the
inference process. The second layer is the logic program based on
incremental ASP that computes the answer set.

4.3.2 Continuous Querying with Reasoning
The continuous inference task of query answering is the point

of conjunction between RDF stream processing engines, which
perform continuous queries over RDF streams, and reasoners over
RDF streams. This area is only partially explored, but the works
presented hereafter represent promising steps in this direction.

IMaRS. IMaRS [30] is a variation of DReD for the incremental
maintenance of the materialization of all the knowledge that is valid
in a given window of time. It is one of the first application of
DReD to stream reasoning. IMaRS optimizes the computation of
incremental maintenance in presence of deletions by exploiting the
semantics of windows to determine when a statement is going to
expire and thus should be deleted. In this way, it is possible to
manage the deletions that, in the general DReD case, cannot be
foreseen and are very expensive because they require to determine
which consequences become invalid. This allows IMaRS to work
out a new correct materialization when a new window is computed
by dropping explicit and implicit knowledge that is no longer valid.

Sparkwave. Sparkwave [38] performs materialization based on
pattern matching over RDF data streams and RDF schema entail-
ment. Sparkwave implements IMaRS on the top of the well known
Rete algorithm to compute pattern matching and augments it with
RDF schema entailment under the assumption that the ontology
does not change over time. Under this assumption, RDF schema
axioms can be encoded as rules that are activated by individual RDF
triples from the stream. Therefore, each triple from the stream can
be treated independently and in a stateless way, which guarantees
good performance.

DyKnow. DyKnow [35] is a middleware for autonomous agents
that sense and act in a dynamic and changing environment. The
agents take in input row data from the sensors and create on the fly

qualitative knowledge structures representing aspects of the dynamic
environment where they are. These structures are at the basis of
qualitative reactive reasoning to perform symbol grounding, signal
to symbol transformations, information fusion, contextual reasoning,
and focus of attention.

ETALIS. ETALIS [4] builts on the top of a Prolog engine and
captures event patterns as deductive rules to be evaluated against
the streaming data. In particular, ETALIS performs RDF schema
entailment that is a relatively simple form of reasoning with good
computation complexity.

EP-SPARQL. EP-SPARQL combines event processing opera-
tors and SPARQL queries. It exploits ETALIS by translating EP-
SPARQL queries in rules for ETALIS. While most of the systems
we presented in Section 4.4 evaluate SPARQL queries without using
any form of reasoning, EP-SPARQL represents an exception, since
it also derives implicit knowledge before performing pattern match-
ing to answer a query. To the best of our knowledge, EP-SPARQL
is the only RDF stream processing language to support interval time
semantics.

STARQL. STARQL [51] defines the semantics of stream reason-
ing in two layers: the first layer denotes an Ontology Language to
model the data and its schema, and the second layer is an Embed-
ded Constraint Language for query composition. STARQL offers
window operators, clauses to express event matching and a layer to
integrate static and streaming data.

4.4 Formal Models
The emerging number of approaches for stream reasoning raised

the need of compare and contrast them. This introduced the problem
of the lack of foundations, key to model and formally define the
behaviors of the developed solutions.

To tackle this issue, two works recently emerged, namely RSP-
QL [31] and LARS [17]. They follow two different approaches: the
former starts by a query processing model, SPARQL, and extends
it in order to capture the behavior of stream reasoning engines; the
latter defines window as operator in modal logics.

In the direction of finding agreements on the approaches, the
W3C RSP community group2 is working in the direction of defin-
ing common models for RDF streams and relative processing and
protocols for their exchange across the Web.

RSP-QL. RSP-QL [31] is a formal model to describe the eval-
uation semantics of stream reasoning systems in the context of
continuous query answering. RSP-QL moves the evaluation seman-
tics of the model from one time (as in SPARQL) to continuous,
meaning that RSP-QL produces streams of answers to cope with the
dynamicity of the streaming data, which changes over time.

This model is used as basis do introduce event and data stream
processing inspired operators, such as sliding windows and event
patterns. RSP-QL captures the evaluation semantics of most engines,
such as C-SPARQL, CQELS and SPARQLstream.

LARS. LARS [17] introduces a logic to precisely define the data
and processing model for a stream reasoning engine. Concern-
ing the data, LARS models the notion of stream as sequence of
time-annotated formulas. In addition to the usual logic operators —
conjunction, disjunction, implication, negation— the authors define
four temporal logic operators: (i) � indicates that a formula holds at
some time in the past; (ii) � indicated that a formula always holds
in the past; (iii) @t indicates that a formula holds at the specific
point in time t; (iv) � indicates that a formula holds in a given time
interval, and is used to express the semantics of time windows. The

2Cf. https://www.w3.org/community/rsp/.

authors prove that LARS captures the semantics of the CQL and
Etalis languages.

4.5 Dealing with Data Veracity
Streaming information is often incomplete and noisy. Some

recent work [10, 11, 16] demonstrated the possibility to effectively
deal with noisy and incomplete social media streams by coupling
deductive stream reasoning with relational learning.

[65] proposes a new approach to OBDA for data streams to handle
fuzzy and temporal information. The system can answer (temporal)
fuzzy conjunctive queries over fuzzy data streams with respect to
a crisp DL-Lite ontology. This enables the use of standard query
rewriting engines while dealing with noisy data.

[50] proposes a framework to deal with inconsistencies, noisy
data, and probabilistic processing rules in RDF data streams and
Linked Data. The framework reasons about dynamic Web data using
probabilistic Answer Set Programming (ASP) [14].

Probabilistic Event Calculus [59] deals with uncertainty in logic-
based event recognition by extending the Event Calculus [58] with
Markov logic networks [55].

In [42], statistical learning and stream reasoning are combined:
the former builds an ontology that the latter uses to perform reason-
ing. The final goal is to predict the upcoming content of the stream,
such as the traffic conditions of cities [62].

5. DISCUSSION AND FUTURE WORKS
The research conducted so far has shown that stream reasoning is

indeed possible: it is no longer something that needs to be proved,
but rather something that needs to be improved.

Stream reasoning provides the technology stack to tame variety in
data streams by means of (i) a data model to represent heterogenous
data streams — RDF streams; (ii) continuous queries languages
(Section 4.2); (iii) continuous reasoning techniques (Section 4.3).

Moreover, Section 4.3.2 and Section 4.5 show that it is possible
to tame velocity and variety simultaneously by optimizing the con-
tinuous querying and continuous reasoning tasks to provide reactive
answers. They also show that it is possible to tame veracity by
combining deductive stream reasoning with other techniques robust
to noise.

Some real-world applications were built on top of stream rea-
soning technologies. This happened in the areas of Social Media
Analytics [10, 13, 11, 16] and Smart Cities [12, 53, 63].

However, existing approaches have limitations that demand for
further investigations, and that make stream reasoning an open field
of research.

First, the work on expressive deductive stream reasoning is at
an intermediate stage. Existing stream reasoning approaches are
fragmented: some focus on temporal reasoning, some on rule base
reasoning, some on expressive Description Logics, some on even
more complex reasoning techniques like ASP. A unified approach to
stream reasoning has not been elaborated yet, despite the promising
work presented in Section 4.4. The same applies for the ability of
the stream reasoning systems to deal with the variety dimension;
approaches exists, but they lack a common theory.

Second, despite streams are parallel and distributed in nature, so
far only [52] has reported on successful investigation on distributed
and parallel RDF stream processing. Few work in progress on
parallel stream reasoning is reported in [37] and [45].

Similarly, the processing might involve distributed static data that
is too large to be fetched locally at one node (e.g., on the Web).
Techniques like [26, 72] are therefore needed to identify and retrieve
this data on-demand, in order to enable more sophisticated inference
and control at the same time the impact on engine responsiveness.

Third, the long term success of stream reasoning requires a frame-
work for comparative evaluation [29, 64]. The community needs
a comprehensive and widely accepted benchmark that can be used
to provide concrete evidence that stream reasoning is the best solu-
tion in some domain. It is of paramount importance to include in
the comparison also state-of-the-art solutions for stream and event
processing.

Finally, data streams are only an example of ordered dataset. The
presence of effective order-sensitive processing techniques [30, 38,
49] open the opportunity to harness other types of ordering relations
among items [28], for instance to investigate top-k query answering.

6. CONCLUSIONS
This tutorial paper presents an overview of stream reasoning, a

recent and growing research area that aims to combine the benefits
of stream processing systems and reasoning engines to better capture
the requirement of modern data intensive applications, specifically
concerning the velocity and variety of input data.

The paper offers an overview of the research on data and event
stream processing and reasoning, which represent the foundational
elements for stream reasoning. The paper then motivates the need for
stream reasoning by analyzing the requirements of some scenarios,
and presents the current state of the art of the research on stream
reasoning.

The goal of the tutorial paper is to highlight the open questions
and challenges in the domain, to stimulate the discussion and pro-
mote further developments.

7. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A new model and architecture for data stream
management. VLDB Journal, 12(2):120–139, 2003.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,
F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl,
F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter,
M. Höger, K. Tzoumas, and D. Warneke. The stratosphere
platform for big data analytics. VLDB Journal, 23(6):939–964,
2014.

[3] D. Anicic, P. Fodor, N. Stojanovic, and R. Stühmer. An
approach for data-driven and logic-based complex event
processing. In Proceedings of the International Conference on
Distributed Event-Based Systems, DEBS ’09, pages 26:1–26:2.
ACM, 2009.

[4] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream
reasoning and complex event processing in etalis. Semantic
Web, 3(4):397–407, 2012.

[5] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom. Stream: The stanford stream
data manager (demonstration description). In Proceedings of
the International Conference on Management of Data,
SIGMOD ’03, pages 665–665. ACM, 2003.

[6] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: Semantic foundations and query execution. The
VLDB Journal, 15(2):121–142, 2006.

[7] A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. The dl-lite family and relations. Journal of
Artificial Intelligence Research, 36:1–69, 2009.

[8] F. Baader and W. Nutt. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings
Symposium on Principles of Database Systems, PODS ’02,
pages 1–16. ACM, 2002.

[10] M. Balduini, A. Bozzon, E. Della Valle, Y. Huang, and
G. Houben. Recommending venues using continuous
predictive social media analytics. IEEE Internet Computing,
18(5):28–35, 2014.

[11] M. Balduini, I. Celino, D. Dell’Aglio, E. D. Valle, Y. Huang,
T. K. Lee, S. Kim, and V. Tresp. BOTTARI: an augmented
reality mobile application to deliver personalized and
location-based recommendations by continuous analysis of
social media streams. Journal of Web Semantics, 16:33–41,
2012.

[12] M. Balduini, E. Della Valle, M. Azzi, R. Larcher, F. Antonelli,
and P. Ciuccarelli. Citysensing: Fusing city data for visual
storytelling. IEEE MultiMedia, 22(3):44–53, 2015.

[13] M. Balduini, E. Della Valle, D. Dell’Aglio, M. Tsytsarau,
T. Palpanas, and C. Confalonieri. Social listening of city scale
events using the streaming linked data framework. In
Proceedings of the International Semantic Web Conference,
ISWC ’13, pages 1–16. Springer, 2013.

[14] C. Baral, M. Gelfond, and J. N. Rushton. Probabilistic
reasoning with answer sets. Theory and Practice of Logic
Programming, 9(1):57–144, 2009.

[15] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. C-sparql: a continuous query language for
rdf data streams. International Journal of Semantic
Computing, 04(01):3–25, 2010.

[16] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, Y. Huang,
V. Tresp, A. Rettinger, and H. Wermser. Deductive and
inductive stream reasoning for semantic social media
analytics. IEEE Intelligent Systems, 25(6):32–41, 2010.

[17] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Lars: A
logic-based framework for analyzing reasoning over streams.
In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI ’15, pages 1431–1438. AAAI Press, 2015.

[18] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher,
B. Panda, M. Riedewald, M. Thatte, and W. White. Cayuga: A
high-performance event processing engine. In Proceedings of
the International Conference on Management of Data,
SIGMOD ’07, pages 1100–1102. ACM, 2007.

[19] J. Calbimonte, Ó. Corcho, and A. J. G. Gray. Enabling
ontology-based access to streaming data sources. In
Proceedings of the International Semantic Web Conference,
ISWC ’10, pages 96–111. Springer, 2010.

[20] D. Calvanese, M. Koubarakis, and D. Toman. Special issue of
the journal of web semantics on ontology-based data access.
Journal of Web Semantics, 33:1–2, 2015.

[21] S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In Proceedings of the
International Conference on Very Large Data Bases, VLDB
’91, pages 577–589. Morgan Kaufmann, 1991.

[22] G. Cugola and A. Margara. Tesla: A formally defined event
specification language. In Proceedings of the International
Conference on Distributed Event-Based Systems, DEBS ’10,
pages 50–61. ACM, 2010.

[23] G. Cugola and A. Margara. Processing flows of information:
From data stream to complex event processing. ACM
Computing Surveys, 44(3):15:1–15:62, 2012.

[24] R. Cyganiak, D. Wood, and M. Lanthaler. Rdf 1.1 concepts
and abstract syntax. Technical report, 2014.

[25] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF
Mapping Language. Technical report, W3C Recommendation,
2012.

[26] S. Dehghanzadeh, D. Dell’Aglio, S. Gao, E. Della Valle,
A. Mileo, and A. Bernstein. Approximate continuous query
answering over streams and dynamic linked data sets. In
Proceedings of Engineering the Web in the Big Data Era,
ICWE ’15, pages 307–325. Springer, 2015.

[27] E. Della Valle, S. Ceri, F. v. Harmelen, and D. Fensel. It’s a
streaming world! reasoning upon rapidly changing
information. IEEE Intelligent Systems, 24(6):83–89, 2009.

[28] E. Della Valle, S. Schlobach, M. Krötzsch, A. Bozzon, S. Ceri,
and I. Horrocks. Order matters! harnessing a world of
orderings for reasoning over massive data. Semantic Web,
4(2):219–231, 2013.

[29] D. Dell’Aglio, J. Calbimonte, M. Balduini, Ó. Corcho, and
E. D. Valle. On correctness in RDF stream processor
benchmarking. In Proceedings of the International Semantic
Web Conference, ISWC ’13, pages 326–342. Springer, 2013.

[30] D. Dell’Aglio and E. Della Valle. Incremental reasoning on
RDF streams. In Linked Data Management, pages 413–435.
Chapman and Hall/CRC, 2014.

[31] D. Dell’Aglio, E. Della Valle, J. Calbimonte, and Ó. Corcho.
RSP-QL semantics: A unifying query model to explain
heterogeneity of RDF stream processing systems.
International Journal Semantic Web Inf. Syst., 10(4):17–44,
2014.

[32] G. Erétéo, M. Buffa, F. Gandon, and O. Corby. Analysis of a
real online social network using semantic web frameworks. In
Proceedings of the International The Semantic Web
Conference, ISWC ’09, pages 180–195. Springer, 2009.

[33] O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Co., 2010.

[34] S. Harris and A. Seaborne. Sparql 1.1 query language.
Technical report, W3C Recommendation, 2013.

[35] F. Heintz and P. Doherty. Dyknow: An approach to
middleware for knowledge processing. Journal of Intelligent
and Fuzzy Systems, 15(1):3–13, 2004.

[36] P. Hitzler, M. Krotzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 Web Ontology Language Primer.
Technical report, W3C Recommendation, 2012.

[37] J. Hoeksema and S. Kotoulas. High-performance distributed
stream reasoning using s4. In Proceedings of the International
Workshop on Ordering and Reasoning, 2011.

[38] S. Komazec, D. Cerri, and D. Fensel. Sparkwave: Continuous
schema-enhanced pattern matching over rdf data streams. In
Proceedings of the International Conference on Distributed
Event-Based Systems, DEBS ’12, pages 58–68. ACM, 2012.

[39] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
heron: Stream processing at scale. In Proceedings of the
International Conference on Management of Data, SIGMOD
’15, pages 239–250. ACM, 2015.

[40] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth.
A native and adaptive approach for unified processing of
linked streams and linked data. In Proceedings of the
International Semantic Web Conference, ISWC ’11, pages
370–388. Springer-Verlag, 2011.

[41] F. Lecue, S. Kotoulas, and P. M. Aonghusa. Capturing the
pulse of cities: Opportunity and research challenges for robust

stream data reasoning. In Proceedings of AAAI Workshops,
AAAI ’12, 2012.

[42] F. Lécué and J. Z. Pan. Predicting knowledge in an ontology
stream. In Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI ’13, pages 2662–2669. AAAI
Press, 2013.

[43] M. Lenzerini. Data integration: A theoretical perspective. In
Proceedings of the Symposium on Principles of Database
Systems, pages 233–246, 2002.

[44] V. Lifschitz. What is answer set programming? In
Proceedings of the Conference on Artificial Intelligence,
AAAI ’08, pages 1594–1597. AAAI Press, 2008.

[45] C. Liu, J. Urbani, and G. Qi. Efficient RDF stream reasoning
with graphics processingunits (GPUs). In Proceedings of the
International conference on World Wide Web, WWW ’14,
pages 343–344, 2014.

[46] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, 2001.

[47] A. Margara, J. Urbani, F. van Harmelen, and H. Bal.
Streaming the web: Reasoning over dynamic data. Web
Semantics: Science, Services and Agents on the World Wide
Web, 25(C):24–44, 2014.

[48] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth.
Streamrule: A nonmonotonic stream reasoning system for the
semantic web. In Proceedings of the International Conference
on Web Reasoning and Rule Systems, RR ’13, pages 247–252.
Springer-Verlag, 2013.

[49] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and
J. Banerjee. Rdfox: A highly-scalable RDF store. In
Proceedings of the International Semantic Web Conference,
pages 3–20. Springer, 2015.

[50] M. Nickles and A. Mileo. Web stream reasoning using
probabilistic answer set programming. In Proceedings of the
International Conference on Web Reasoning and Rule
Systems, RR ’14, pages 197–205, 2014.

[51] Ö. L. Özçep, R. Möller, and C. Neuenstadt. A
stream-temporal query language for ontology based data
access. In Proceedings of the International Workshop on
Description Logics, pages 696–708, 2014.

[52] D. L. Phuoc, H. N. M. Quoc, C. L. Van, and M. Hauswirth.
Elastic and scalable processing of linked stream data in the
cloud. In Proceedings of the International Semantic Web
Conference, volume 8218 of ISWC ’13, pages 280–297.
Springer, 2013.

[53] D. Puiu, P. M. Barnaghi, R. Toenjes, D. Kuemper, M. I. Ali,
A. Mileo, J. X. Parreira, M. Fischer, S. Kolozali,
N. FarajiDavar, F. Gao, T. Iggena, T. Pham, C. Nechifor,
D. Puschmann, and J. Fernandes. Citypulse: Large scale data
analytics framework for smart cities. IEEE Access,
4:1086–1108, 2016.

[54] Y. Ren and J. Z. Pan. Optimising ontology stream reasoning
with truth maintenance system. In Proceedings of the
International Conference on Information and Knowledge
Management, CIKM ’11, pages 831–836. ACM, 2011.

[55] M. Richardson and P. M. Domingos. Markov logic networks.
Machine Learning, 62(1-2):107–136, 2006.

[56] M. Rinne, E. Nuutila, and S. Törmä. INSTANS:
high-performance event processing with standard RDF and
SPARQL. In Proceedings of the ISWC Posters &
Demonstrations Track, CEUR Workshop Proceedings.
CEUR-WS.org, 2012.

[57] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web
revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[58] M. Shanahan. The event calculus explained. In Artificial
Intelligence Today, pages 409–430. 1999.

[59] A. Skarlatidis, G. Paliouras, A. Artikis, and G. A. Vouros.
Probabilistic event calculus for event recognition. ACM
Transactions on Computer Logic, 16(2):11:1–11:37, 2015.

[60] M. Staudt and M. Jarke. Incremental maintenance of
externally materialized views. In Proceedings of the
International Conference on Very Large Data Bases, VLDB
’96, pages 75–86. Morgan Kaufmann, 1996.

[61] H. Stuckenschmidt, S. Ceri, E. Della Valle, and F. van
Harmelen. Towards expressive stream reasoning. volume
10042 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl,
2010.

[62] S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lécué, and
A. Corradi. Real-time urban monitoring in dublin using
semantic and stream technologies. In Proceedings of the
International Semantic Web Conference, ISWC ’13, pages
178–194. Springer, 2013.

[63] S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lécué, and
A. Corradi. Real-time urban monitoring in dublin using
semantic and stream technologies. In Proceedings of the
International Semantic Web Conference, volume 8219 of
ISWC ’13, pages 178–194. Springer, 2013.

[64] R. Tommasini, E. Della Valle, M. Balduini, and D. Dell’Aglio.
Can a brute gang of facts on stream processing murder a
theory on reasoning? In Proceedings of the European
Semantic Web Conference, ESWC ’16, 2016.

[65] A. Turhan and E. Zenker. Towards temporal fuzzy query
answering on stream-based data. In Proceedings of the
Workshop on High-Level Declarative Stream Processing,
pages 56–69, 2015.

[66] J. Urbani, A. Margara, C. Jacobs, F. Harmelen, and H. Bal.
Dynamite: Parallel materialization of dynamic rdf data. In
Proceedings of the International Semantic Web Conference,
ISWC ’13, pages 657–672. Springer, 2013.

[67] R. Volz, S. Staab, and B. Motik. Journal on data semantics.
chapter Incrementally Maintaining Materializations of
Ontologies Stored in Logic Databases, pages 1–34.
Springer-Verlag, 2005.

[68] A. Wagner, S. Speiser, and A. Harth. Semantic web
technologies for a smart energy grid: Requirements and
challenges. In Proceedings of the International Semantic Web
Conference, ISWC ’10, pages 33–37. Springer, 2010.

[69] O. Walavalkar, A. Joshi, T. Finin, and Y. Yesha. Streaming
knowledge bases. In Proceedings of the International
Workshop on Scalable Semantic Web Knowledge Base
Systems, SSWS ’08, 2008.

[70] W. White, M. Riedewald, J. Gehrke, and A. Demers. What is
"next" in event processing? In Proceedings of the Symposium
on Principles of Database Systems, PODS ’07, pages
263–272. ACM, 2007.

[71] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Symposium on Operating Systems
Principles, SOSP ’13, pages 423–438. ACM, 2013.

[72] S. Zahmatkesh, E. Della Valle, and D. Dell’Aglio. When a
filter makes the difference in continuously answering sparql
queries on streaming and quasi-static linked data. In
Proceedings of Engineering the Web in the Big Data Era,
ICWE ’16. Springer, 2016.

