
Tutorial:
Complex Event Recognition Languages

Alexander Artikis1,2, Alessandro Margara3, Martin Ugarte4,
Stijn Vansummeren4, Matthias Weidlich5

1University of Piraeus, 2NCSR Demokritos, 3Politecnico di Milano,
4Université Libre de Bruxelles, 5Humboldt-Universtität zu Berlin

Complex Event Recognition (Event Pattern Matching)

INPUT I RECOGNITION I OUTPUT ⌅

Event

Recognition

System

CE Definitions

Streams of SDEs

.

.

Recognised CEs

.

.

Complex Event Recognition for Security

Online Recognition

Input Output

340 inactive(id
0

)

340 coord(id
0

)=(20.88,�11.90)

340 appear(id
0

)

340 walking(id
2

)

340 coord(id
2

)=(25.88,�19.80)

340 active(id
1

)

340 coord(id
1

)=(20.88,�11.90)

340 walking(id
3

)

340 coord(id
3

)=(24.78,�18.77)

380 walking(id
3

)

380 coord(id
3

)=(27.88,�9.90)

380 walking(id
2

)

380 coord(id
2

)=(28.27,�9.66)

Online Recognition

Input Output

340 inactive(id
0

) since(340) leaving object(id
1

, id
0

)

340 coord(id
0

)=(20.88,�11.90)

340 appear(id
0

)

340 walking(id
2

)

340 coord(id
2

)=(25.88,�19.80)

340 active(id
1

)

340 coord(id
1

)=(20.88,�11.90)

340 walking(id
3

)

340 coord(id
3

)=(24.78,�18.77)

380 walking(id
3

)

380 coord(id
3

)=(27.88,�9.90)

380 walking(id
2

)

380 coord(id
2

)=(28.27,�9.66)

Online Recognition

Input Output

340 inactive(id
0

) since(340) leaving object(id
1

, id
0

)

340 coord(id
0

)=(20.88,�11.90) since(340) moving(id
2

, id
3

)

340 appear(id
0

)

340 walking(id
2

)

340 coord(id
2

)=(25.88,�19.80)

340 active(id
1

)

340 coord(id
1

)=(20.88,�11.90)

340 walking(id
3

)

340 coord(id
3

)=(24.78,�18.77)

380 walking(id
3

)

380 coord(id
3

)=(27.88,�9.90)

380 walking(id
2

)

380 coord(id
2

)=(28.27,�9.66)

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).
I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.

I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).
I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.

I No limit on the temporal distance between the events
comprising the composite activity (no ‘WITHIN’ constraint).

I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).

I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).
I Concurrency constraints.

I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).
I Concurrency constraints.
I Spatial reasoning.

I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity (no ‘WITHIN’ constraint).
I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Complex Event Recognition for Maritime Surveillance

Complex Event Recognition for Maritime Surveillance

Fast Approach

I A vessel is moving at a high speed ...

I towards other vessels.

Suspicious Delay

I A vessel fails to report position ...

I and the estimated speed during the communication gap is low.

Possible Rendezvous

I Two vessels are suspiciously delayed ...

I in the same location ...

I at the same time.

Application Requirements

I Input:
I Instantaneous events.
I Durative events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity.
I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Application Requirements

I Input:
I Instantaneous events.
I Durative events.
I Context information.

I Output: durative events.
I The interval may be open.
I Relational events.
I No limit on the temporal distance between the events

comprising the composite activity.
I Concurrency constraints.
I Spatial reasoning.
I Event hierarchies.

Complex Event Recognition for
Credit Card Fraud Management

Input:

I Credit card transactions from all over the world.

Output:

I Cloned card — a credit card is being used simultaneously in
di↵erent countries.

I New high use — the card is being frequently used in
merchants or countries never used before.

I Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

Application Requirements

I Input:
I Instantaneous events.
I Context information.

I Output: durative events.
I Relational & non-relational events.
I Limited temporal distance between the events comprising

fraudulent activity (‘WITHIN’ constraint).
I Event sequences.
I Spatial reasoning for some patterns.

Agricultural Monitoring

Application Requirements

I Input: Instantaneous events.
I Output: Instantaneous/durative events.

I Correlation of events of di↵erent sensors.
I Limited temporal distance between the events comprising

alarming behavior (‘WITHIN’ constraint).
I Event sequences (’increasing streak of temperature

measurements’)
I Spatial reasoning for some patterns.

Tutorial Outline

1. Automata-based models and methods
2. Tree-based models and methods
3. Logic-based models and methods
4. Outlook

Automata-based Models
and Methods

Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

A wood fire is likely
if low humidity is
measured after

high temperatures

Similar to regular expressions

Use automata to detect complex events

Challenges

Regex th

An event T eventually
followed by an event H

A wood fire is likely
if low humidity is
measured after

high temperatures

A symbol t immediately
followed by a symbol h

Sequencing

{3,4}
{6,7}

{2,4}{3,4}
{6,7}{2,5}
{3,5}{2,7}
{3,7}

A wood fire is likely
if low humidity is
measured after

high temperatures
Regex th

h t t h h t h
40 35 40 25 20 45 19
1 2 3 4 5 6 7

Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

Iterations (Kleene closure)
High-humidity events H1,H2,…,Hn

followed by a low-temperature event T

[4],{6}
[4],{7}

[4,5],{6}
[4,5],{7}

Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

h t t h h t t
80 15 14 85 84 10 12
1 2 3 4 5 6 7

[1],{2}
[1],{3}
[1],{6}
[1],{7}

[1,4,5],{6}
[1,4,5],{7}

[1,4],{6}
[1,4],{7}
[1,5],{6}
[1,5],{7}

[5],{6}
[5],{7}

h*t

Iterations (Kleene closure)

SEMANTICS

CAYUGA

Towards Expressive Publish/Subscribe Systems. Alan Demers, Johannes Gehrke,
Mingsheng Hong, Mirek Riedewald and Walker White; EDBT 2006

 Cayuga: A General Purpose Event Monitoring System. Alan J. Demers, Johannes Gehrke,
Biswanath Panda, Mirek Riedewald, Varun Sharma, Walker M. White; CIDR 2007

Cayuga Event Language
(CEL)

SELECT <attributes>
FROM <stream expression>
PUBLISH <output_stream_name>

Named streams

Attributes generates
a stream

has{
New stream named <output_stream_name>

SELECT id as t_id
FROM Temp
PUBLISH TempIds

Temp

T(id=1, temp=24)
T(id=2, temp=20)
T(id=3, temp=22)
T(id=1, temp=25)

…
T(id=2, temp=32){

Projection, renaming

TempIds

T(t_id=1)
T(t_id=2)
T(t_id=3)
T(t_id=1)

…T(t_id=2){

Filtering
Remove all tuples with temperatures below 30 degrees

FILTER{temp >= 30}

SELECT id, temp
FROM FILTER{temp >= 30}Temp
PUBLISH HighTemp

Stream expression

FILTER{<condition>}<stream_expression>

Temp

Stream expression

SELECT id, temp
FROM FILTER{temp >= 30}Temp
PUBLISH HighTemp

Temp

T(id=1, temp=24)
T(id=2, temp=35)
T(id=3, temp=22)
T(id=1, temp=33)

…
T(id=2, temp=32){ HighTemp

T(id=2, temp=35)
T(id=1, temp=33)

…
T(id=2, temp=32){

Select the (next) temperature of areas
in which a low humidity was detected

Hum NEXT{$1.id = $2.id AND $1.hum < 25} Temp

Output schema: (id_1, id_2, hum, temp)

Sequencing

Condition

Stream expressions

Stream expression

T(id, temp)
H(id, hum)

Temp

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=22)

T(id=1, temp=25)

…
T(id=2, temp=32){Hum

H(id=2, hum=15)

H(id=1, hum=12)

H(id=3, hum=22)

H(id=2, hum=14)

…
H(id=1, hum=18){

Hum NEXT{$1.id = $2.id AND $1.hum < 25} Temp

(id_1=2, id_2=2, hum=15, temp=20)

(id_1=1, id_2=1, hum=12, temp=25)

(id_1=3, id_2=3, hum=22, temp=22)

(id_1=2, id_2=2, hum=14, temp=25)
…

1

3

5

7

9

2

4

6

8

10

Temp

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=22)

T(id=1, temp=25)

…
T(id=2, temp=32){Hum

H(id=2, hum=15)

H(id=1, hum=12)

H(id=3, hum=22)

H(id=2, hum=14)

…
H(id=1, hum=18){

Hum NEXT{$1.id = $2.id AND $1.hum < 25} Temp

(id_1=2, id_2=2, hum=15, temp=20)

(id_1=1, id_2=1, hum=12, temp=25)

(id_1=3, id_2=3, hum=22, temp=22)

(id_1=2, id_2=2, hum=14, temp=25)
…

1

3

5

7

9

2

4

6

8

10

Compile into
an automaton?

Temp

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=22)

T(id=1, temp=25)

…
T(id=2, temp=32){Hum

H(id=2, hum=15)

H(id=1, hum=12)

H(id=3, hum=22)

H(id=2, hum=14)

…
H(id=1, hum=18){

Hum NEXT{$1.id = $2.id AND $1.hum < 25} Temp

1

3

5

7

9

2

4

6

8

10

q2
Hum h
h.hum < 25
x = h.id

q3
Temp t
t.id = x

q1start

*

output h.* output t.*

Temp t, Hum h
t.id != x

Temp

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=22)

T(id=1, temp=25)

…
T(id=2, temp=32){Hum

H(id=2, hum=15)

H(id=1, hum=12)

H(id=3, hum=22)

H(id=2, hum=14)

…
H(id=1, hum=18){ 1

3

5

7

9

2

4

6

8

10

q2
Hum h
h.hum < 25
x = h.id

q3
Temp t
t.id = x

q1start

*

Temp t, Hum h
t.id != x

q1 q2
x = 2

q2 q3
H1 T4 {H1,T4}q2

output h.* output t.*

Temp

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=22)

T(id=1, temp=25)

…
T(id=2, temp=32){Hum

H(id=2, hum=15)

H(id=1, hum=12)

H(id=3, hum=22)

H(id=2, hum=14)

…
H(id=1, hum=18){ 1

3

5

7

9

2

4

6

8

10

q2
Hum h
h.hum < 25
x = h.id

q3
Temp t
t.id = x

q1start

*

Temp t, Hum h
t.id != x

q1 q1
x = 15

q2 q3
H3 T8

q2 q2 q2 q2

{H3,T8}

output h.* output t.*

q1

<Stream $1> NEXT{<condition>} <Stream $2>

Select every element from <Stream $1>
and the next element from <Stream $2>

satisfying the <condition>.

Iteration

<condition> for filtering <Stream $2> (like in NEXT)?

Condition to stop iterations?

Computations during iterations…

<Stream $1>
NEXT{<condition>} <Stream $2>
 …
NEXT{<condition>} <Stream $2>

Iteration

<Stream $1> FOLD{<NEXT_condition>,
<stop_condition>, <compute>} <Stream $2>

Conditions have access to $1, $2, and $.
The latter refers to the previous iteration.

<compute> can do incremental computations

FOLD{<NEXT_condition>,
 <Stop_condition>,
 <compute> } Temp

Iteration
Create a stream of all

decreasing temperature
streaks composed of

more than three events.

(SELECT *, 1 AS cnt FROM Temp)
FILTER{cnt > 3}(

)
$.cnt + 1 AS cnt
$.temp <= $2.temp,
$.temp > $2.temp,

($1.id=1, $1.temp=24, $2.id=2, $2.temp=20, cnt=2)$2.id=3, $2.temp=19, cnt=3)

($1.id=2, $1.temp=20, $2.id=3, $2.temp=19, cnt=2)

($1.id=2, $1.temp=20, $2.id=2, $2.temp=17, cnt=2)

$2.id=1, $2.temp=17, cnt=4)

$2.id=1, $2.temp=17, cnt=3)

FOLD{<NEXT_condition>,
 <Stop_condition>,
 <compute> } Temp

(SELECT *, 1 AS cnt FROM Temp)
FILTER{cnt > 3}(

)
$.cnt + 1 AS cnt
$.temp <= $2.temp,
$.temp > $2.temp,

T(id=1, temp=24)

T(id=2, temp=20)

T(id=3, temp=19)

T(id=1, temp=17)

…T(id=2, temp=18)

, cnt=1)

, cnt=1)

, cnt=1)

, cnt=1)

, cnt=1)

1

2

3

4

5

1

2

3

4

$.id=1, $.temp=24, cnt=1$.id=2, $.temp=20, cnt=2

$.id=2, $.temp=20, cnt=1

$.id=3, $.temp=19, cnt=3

$.id=3, $.temp=19, cnt=2

$.id=3, $.temp=19, cnt=1

$.id=1, $.temp=17, cnt=4

$.id=1, $.temp=17, cnt=3

$.id=1, $.temp=17, cnt=2

$.id=1, $.temp=17, cnt=1

FOLD{<NEXT_condition>,
 <Stop_condition>,
 <compute> } Temp

(SELECT *, 1 AS cnt FROM Temp)
FILTER{cnt > 3}(

)
$.cnt + 1 AS cnt
$.temp <= $2.temp,
$.temp > $2.temp,

(id_1=2, temp_1=20, id_2=3, temp_2=17, cnt=2)

(id_1=2, temp_1=20, id_2=1, temp_2=17, cnt=3)

(id_1=1, temp_1=24, id_2=1, temp_2=17, cnt=4)

x

Compilation

Notify me of decreasing
temperature streaks of at

least 3 events in which the
temperature drops from
above 40 to below 20

FOLD{$.temp > $2.temp,
 $.temp <= $2.temp OR
 (cnt >= 3 AND $.temp < 20),
$.cnt + 1 AS cnt}

Temp

(SELECT *, 1 AS cnt FROM
 FILTER{temp > 40}Temp)

FILTER{cnt >= 3, temp < 20}(

)

q1 q2
Temp t
t.temp > 40
x = t.temp
cnt = 1 Temp t

t.temp < x
x = t.temp
cnt += 1

q3

Hum h

Temp t
t.temp >= x
cnt >= 3
x < 20

start

*

output t.*, cntoutput t.*

q1 q2
Temp t
t.temp > 40
x = t.temp
cnt = 1 Temp t

t.temp < x
x = t.temp
cnt += 1

q3

Hum h

Temp t
t.temp >= x
cnt >= 3
x < 20

start

t t h t t h h t t h t t t
45 35 40 36 20 43 31 19 42 55 29 18 23

*

q1 q2
x = 45
cnt = 1

q2
x = 35
cnt = 2

x

output t.*, cntoutput t.*

q2

q1 q2
Temp t
t.temp > 40
x = t.temp
cnt = 1 Temp t

t.temp < x
x = t.temp
cnt += 1

q3

Hum h

Temp t
t.temp >= x
cnt >= 3
x < 20

start

t t h t t h h t t h t t t
45 35 40 36 20 43 31 19 42 55 29 18 23

*

q1 q1 q1 … q1 q2
x = 42
cnt = 1

q2
x = 29
cnt = 2

q2
x = 18
cnt = 3

q3

output t.*, cntoutput t.*

q2

A simple (?) example
Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

FOLD{$2.hum > 70,
 ($.cnt > 4 AND $2.temp < 10) OR $2.hum <= 70,
 $.cnt + 1 AS cnt}

(SELECT *, 1 AS cnt FROM Hum)

h h h h h h h h t h t t
80 85 84 78 79 75 82 80 15 76 16 9

FILTER{temp < 10}(

)
(Hum NEXT{True} Temp)

Will never be selected!

A simple (?) example
Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

FOLD{$2.hum > 70,
 ($.cnt > 4 AND $2.temp < 10) OR $2.hum <= 70,
 $.cnt + 1 AS cnt}

(SELECT *, 1 AS cnt FROM Hum)

h h h h h h h h t h t t
80 85 84 78 79 75 82 80 15 76 16 9

FILTER{temp < 10}(

)
(Hum NEXT{True} Temp)

Writing rules is not a
simple task…

Will never be selected!

SEMANTICS

SASE / SASE+

High-Performance Complex Event Processing over Streams. Eugene Wu,
Yanlei Diao and Shariq Rizvi; SIGMOD 2006

SASE+: An Agile Language for Kleene Closure over Event Streams. Yanlei
Diao, Neil Immerman and Daniel Gyllstrom; UMass Technical Report, 2007

On Complexity and Optimization of Expensive Queries in Complex Event
Processing. Haopeng Zhang, Yanlei Diao, and Neil Immerman; SIGMOD 2014

Language
Single stream of timestamped events

Named relations with attributes

EVENT <event_pattern>
[WHERE <filter>]
[WITHIN <time_window>]{

New stream, events contain all attributes
(no projection)

T1(id=1, temp=24, tstamp=0.5)

H1(id=2, hum=25, tstamp=0.65)

H2(id=1, hum=33, tstamp=1)

T2(id=2, temp=25, tstamp=1.32)

…H3(id=2, hum=21, tstamp=1.34)

Sequencing

EVENT SEQ(T t, H h)

we assume that
events arrive in order

“All pairs (temperature, humidity), such that
temperature occurred before humidity”

{T1, H1},{T1, H2},{T1, H3},{T2, H3}

{T1, H1},{T1, H2},{T1, H3},{T2, H3}

T1(id=1, temp=24, tstamp=0.5)

H1(id=2, hum=25, tstamp=0.65)

TH1(id1=1, id2=2, temp=24, hum=25, tstamp=0.65)

T1(id=1, temp=24, tstamp=0.5)

H1(id=2, hum=25, tstamp=0.65)

H2(id=1, hum=33, tstamp=1)

T2(id=2, temp=25, tstamp=1.32)

H3(id=2, hum=21, tstamp=1.34)

Filtering

EVENT SEQ(T t; H h)
WHERE t.id = h.id

“All pairs (temperature, humidity), with the same id
such that temperature occurred before humidity”

{T1, H2},{T2, H3}

T1(id=1, temp=24, tstamp=0.5)

H1(id=2, hum=25, tstamp=0.65)

H2(id=1, hum=33, tstamp=1)

T2(id=2, temp=25, tstamp=1.32)

H3(id=2, hum=45, tstamp=1.34)

Time Windows

EVENT SEQ(T t, H h)
WHERE t.id = h.id
WITHIN 0.1 seconds

“All pairs (temperature, humidity), with the
same id such that temperature occurred before

humidity, but at most 0.1 seconds before”

{T2, H3}

T1(id=1, temp=24, tstamp=0.5)

H1(id=2, hum=25, tstamp=0.65)

H2(id=1, hum=33, tstamp=1)

T2(id=2, temp=25, tstamp=1.32)

H3(id=2, hum=45, tstamp=1.34)

Negation

EVENT SEQ(T t, !H h1, H h2)
WHERE t.id = h2.id1

“All pairs (temperature, humidity), with the
same id such that humidity is the first

humidity measurement after temperature”

{T2, H3}

SASE+

FROM <input_stream>
[PATTERN <event_pattern>]
[WHERE <filter>]
[WITHIN <time_window>]
[HAVING <pattern_condition>]
OUTPUT <output_stream_name>

Multiple streams

Kleene closure

Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1 AND
 h.hum > 70 AND t.temp < 10
WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

Plantations might be at
risk if sensor 1 detects
low temperatures after
a high-humidity period

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1 AND
 h.hum > 70 AND t.temp < 10
WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

More declarative

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1 AND
 h.hum > 70 AND t.temp < 10
WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

Compilation

q1 q2
Hum h
h.id = 1
h.hum > 70
x = h.time
cnt = 1

Temp t
t.id = 1
t.temp < 10
t.time - x <= 5 min
cnt >= 3

q3start

skip skip

Hum h
h.id = 1
h.hum > 70
cnt += 1

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1 AND
 h.hum > 70 AND t.temp < 10
WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

outputoutput

output

What about negation?
q2

skip

Hum h
h.id = 1
h.hum > 70
cnt += 1

x
Temp t
t.id = 1
t.temp <= 10

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], !T t1, T t2)
WHERE h.id = 1 AND t1.id = 1 AND
 t2.id = 1 AND h.hum > 70 AND
 t1.temp >= 10 AND t2.temp < 10
WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

output

SEMANTICS

Nondeterminism?

q1 q2 Temp t
t.temp < 10
t.time - x <= 5 min
cnt >= 3

q3start

skip skip

Hum h
h.hum > 70
x = h.time
cnt = 1
sum_h = h.hum

Hum h
h.hum > 70
cnt += 1
sum_h += h.hum

outputoutput

output

Nondeterminism?

q1 q2 Temp t
t.temp < 10
t.time - x <= 5 min
cnt >= 3

q3start

skip skip

Hum h
h.hum > 70
x = h.time
cnt = 1
sum_h = h.hum

Hum h
h.hum > 70
cnt += 1
sum_h += h.hum

outputoutput

output

We need to run this!

q1 q2
event c
c.val > x

q3start

skip skip

event a
a.val > 20
x = a.val

event b
b.val > 25

a b c a b a c b a b c c
25 35 78 10 20 30 76 27 23 6 68 28

1 2 3 4 5 6 7 8 9 10 11 12

a
1x=25

6x=30

9x=23

b+
2
8

c
378

776

1168

1228

outputoutput

output

a
1x=25

6x=30

9x=23

b+
2
8

c
378

776

1168

1228

q1 q2
event c
c.val > x

q3start

skip skip

event a
a.val > 20
x = a.val

event b
b.val > 25

a b c a b a c b a b c c
25 35 78 10 20 30 76 27 23 6 68 28

1 2 3 4 5 6 7 8 9 10 11 12

outputoutput

output

{1,[8],12}

{1,[8,2],12}

{1,[2],12}
…

a
1x=25

6x=30

9x=23

b+
2
8

c
378

776

1168

1228

q1 q2
event c
c.val > x

q3start

skip skip

event a
a.val > 20
x = a.val

event b
b.val > 25

a b c a b a c b a b c c
25 35 78 10 20 30 76 27 23 6 68 28

1 2 3 4 5 6 7 8 9 10 11 12

outputoutput

output

{1,[8],12}

{1,[8,2],12}

{1,[2],12}
…Correlation has to be considered

during the output processing.

Conclusions
CER operators: sequencing, iteration, filtering, …

Multiple effective syntaxes proposed

Semantics (and sometimes syntax) not always clear

Previous research: deal with nondeterminism at runtime

Unified Automata Model
Transitions evaluate formulas

Need to store variables

Need to produce output

Symbolic Automata

Register Automata

Transducer

Open Questions
Is there a general evaluation strategy for this model?

Is there a language capturing the computational model?

What is the complexity of compiling queries into automata?

How do different operators affect this complexity?

What fragments of automata can be run efficiently?

Part II

Recap of the First Part
Operators for CER

– Sequencing
– Kleene Closure
– Negation
– Filtering (predicates, time windows)

Semantics of queries given by automata

PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1
AND h.hum > 70 AND t.temp < 10

WITHIN 5 minutes
HAVING count(h) >= 3

Tutorial Outline

1. Introduction
2. Common CER operators and automata-based CER models
3. Tree-based models and methods
4. Logic-based models and methods
5. Outlook

Tree-based Models Overview

Tree-based models may be used
– At design-time:

Event pattern specification
– At run-time:

Query plan for actual event recognition

Tree-based models are used in various systems
– Initial version of SASE
– ZStream
– Esper

Y. Mei and S. Madden, ZStream: A cost-based query processor for adaptively detecting composite
events. SIGMOD 2009: 193-206

N.P. Schultz-Møller, M. Migliavacca, P.R. Pietzuch: Distributed complex event processing with
query rewriting. DEBS 2009

Chaining of Pattern Operators
Query plans as a fixed operator tree

– Combine automata-based models with additional operators
– Example: Initial version of SASE (SIGMOD 2006):

EVENT SEQ(A x1,B x2,!C x3,D x4)
WHERE [a1, a2] AND x1.a3 = 1
AND x1.a4 < x4.a4

WITHIN T

E. Wu, Y. Diao, S. Rizvi: High-performance complex event processing
over streams. SIGMOD Conference 2006: 407-418

Issues of Automata-based Models 1/3
Fixed recognition order

– Order of events in the definition of a pattern (pattern order) is also
followed in the recognition procedure (recognition order)

– Problematic from a performance point of view if there are large
differences in selectivities

EVENT SEQ(H+ h[], P+ p[], T t)

q1 q2 q4start

skip skip

H
q3

skip

H

P

P

T

h p p t h h h p p h p h p

Issues of Automata-based Models 2/3
Forced sequential order

– Automata enforces ordering of events
– Pattern may not define any ordering

EVENT UNION(H h, T t)

q1 q2 q4start

skip skip

H T

q3

skip

T H

Issues of Automata-based Models 3/3
Integration of negation

– Terminal states are applicable solely if correlation predicates can be
evaluated with past events

– Consequence: Either limited expressiveness or need for additional
filtering

FROM HUM_TEMP_STREAM
PATTERN SEQ(H+ h[], !T t1, T t2)
WHERE h.id = 1 AND t1.id = 1 AND

t2.id = 1 AND h.hum > 70 AND
t1.temp <= 10 AND t2.temp < 10

WITHIN 5 minutes
HAVING count(h) >= 3
OUTPUT Plantation Risk

T t2
t2.id = 1
t2.temp < 10

WHERE h.id = 1 AND t1.id = 1 AND
t2.id = 1 AND h.hum > 70 AND
t1.temp < t2.temp + 5 AND t2.temp < 10

skip

H

T t1
t1.id = 1
t1.temp <= 10

How to use tree-based models
for event pattern specification?

Tree-based Event Patterns
Main idea: Event pattern = operator tree

– Leaf nodes:
types of individual events to be recognised

– Non-leaf nodes:
composite type, built from the types of child nodes

– Common composite types:
• Sequence, conjunction, and disjunction
• Negation, in combination with the above
• Kleene closure as a trinary operator (start, closure, end)

Different representations of a single pattern
– Nesting of operators
– Predicates at different levels of the tree

OP2

T2 T3T1

OP1

Example Pattern

“All pairs (temperature, humidity), with the same id
such that temperature occurred before humidity, but at

most 0.1 seconds before”

EVENT SEQ(T t, H h)
WHERE t.id = h.id
WITHIN 0.1

A wood fire is likely if low humidity is measured
after high temperatures

SEQ

T1: T T2: H

T1.id = T2.id
T2.ts – T1.ts 0.1sec

Extended Example Pattern

“All triples (temperature, humidity, humidity) with
the same id such that high temperature is followed by

multiple low humidity within 0.5 seconds”

T1.temp > 40 T2.hum 25

T1.id = T2.id
T3.ts – T1.ts 0.5sec

T3.hum 25

T2.id = T3.id

SEQ

SEQ

T1: T T2: H T3: H

EVENT SEQ(T t, H h1, H h2)
WHERE t.id = h1.id

AND h1.id = h2.id
AND h1.temp > 40
AND h2.hum ≤ 25
AND h3.hum ≤ 25

WITHIN 0.5

Extended Example Pattern Again

Right-deep pattern

Left-deep pattern

T1.temp > 40 T2.hum 25

T1.id = T2.id
T3.ts – T1.ts 0.5sec

T3.hum 25

T2.id = T3.id

SEQ

SEQ

T1: T T2: H T3: H

T1.temp > 40 T2.hum 25

T2.id = T3.id
T3.ts – T1.ts 0.5sec

T3.hum 25

T1.id = T2.id

SEQ

SEQ

T1: T T2: H T3: H

Example Pattern with Negation

“All pairs (temperature, humidity), with the same id
such that humidity is the first humidity measurement

after temperature”

EVENT SEQ(T t, !H h1, H h2)
WHERE t.id = h2.id
WITHIN 0.5

T1.id = T3.id
T3.ts – T1.ts 0.5secSEQ

NSEQ

T1: T T2: H T3: H

T3.ts – T1.ts 5minKSEQ

T1: H T2: H T3: T
T1.id = 1

T1.hum > 70
T2.id = 1

T2.hum > 70
T3.id = 1

T3.temp < 10

count = 3

Example Pattern with Kleene Closure

PATTERN SEQ(H+ h[], T t)
WHERE h.id = 1 AND t.id = 1
AND h.hum > 70 AND t.temp < 10

WITHIN 5 minutes
HAVING count(h) = 4

Plantations might be at risk if sensor 1 detects low
temperatures after a high-humidity period

Semantics of KSEQ
KSEQ

– Semantics given by evaluation
procedure

– In ZStream: Window of
length count slides over
buffer

T3.ts – T1.ts 5minKSEQ

T1: H T2: H T3: T
T1.id = 1

T1.hum > 70
T2.id = 1

T2.hum > 70
T3.id = 1

T3.temp < 10

count = 3

h t h h t h h t h t t h t

How to use tree-based models
for event recognition?

Event Recognition in ZStream
Main idea

– Each node is assigned an event buffer
– Events in buffers are ordered by timestamp
– Incoming events are put into leaf buffers
– Actual recognition is realised in iterations:

• Idle rounds:
Events are only inserted into leaf buffers

• Assembly rounds:
Evaluation of operators of non-leaf nodes

Major advantage
– Intermediate events are assembled in a

lazy manner

OP2

T2 T3T1

OP1

ZStream’s Batch Iterator Model
Process incoming events in batches

– To increase efficiency
– To increase robustness with respect

to out-of-order arrival

General procedure
1) Read batch of events into leaf buffers
2) If there is no event in final node of tree,

read next batch
3) Otherwise, calculate earliest allowed timestamp (EAT):

time of event in buffer of final node – time window
4) Filter buffers of the tree based on EAT
5) Assemble events from the leaves to root of the tree

OP2

T2 T3T1

OP1

EVENT SEQ(T t, !P p, H h)
WHERE t.id = 1 AND p.id = 1
AND h.id = 1

WITHIN 5

Example

id

ts

1 43 6 7

T3.ts – T1.ts 5sec

SEQ

NSEQ

T1: T T2: P T3: H
T1.id = 1 T2.id = 1 T3.id = 1
1 12

p t t p t p t t h h t
1 1 1 1 2 3 1 2 1 1 1
1 1 3 4 5 6 6 6 7 12 13

Evaluation of Negation Operator
Challenges:

– Occurrence of event may invalidate intermediate composite events
– Filter-last approach induces large number of intermediate results

Approach:
– Iterate over right child buffer (C),

filter based on EAT
– Determine valid interval for each

event in right child buffer (C) based on
left child buffer (B)

– Buffer of NSEQ contains for each event of C, the last event of B that
negates it (or no event of B)

– Timestamp of B events in buffer of NSEQ is used by parent operator
when assembling events

A.ts B.ts SEQ

NSEQ

A B C

Example

id

ts

T3.ts – T1.ts 5sec
T1.ts T2.ts

SEQ

NSEQ

T1: T T2: P T3: H
T1.id = 1 T2.id = 1 T3.id = 1

4 7

1) EAT derived from is 2
2) Filter
3) Valid interval

of is [4,7],
valid interval
of is [7,12]

-
7

7
1

p t t p t p t t h h t
1 1 1 1 2 3 1 2 1 1 1
1 1 3 4 5 6 6 6 7 12 13

1 43 6 71 12

12

12

T3.ts – T1.ts 5sec
T1.ts T2.ts

SEQ

NSEQ

T1: T T2: P T3: H
T1.id = 1 T2.id = 1 T3.id = 1

Evaluation of Sequence Operator
Iterate over right and left child buffer, filtering based on EAT
Check predicates for remaining events

1) EAT is 2
2) Filter
3) Assemble

1
76

4 7 -

43 6 71 12

12

76

Plan Optimisation
Opportunity: Tree-based plans may be semantically equivalent,
but differ in their efficiency

– Algebraic rewriting of trees
– Tuning of the evaluation of predicates
– Nesting/ordering of operators

Approach:
– Derive best logical plan by evaluating equivalent candidate plans

obtained by rewriting rules
– Derive best physical plan by determining the most efficient operator

order

Evaluation of plans is driven by cost model

Cost Model

Cost is CPU cost,
as events reside in memory

Cost of a tree-based plan is the sum of
– Cost of accessing the input data:
#input events touched

– (Weighted) cost of predicate evaluation:
#predicates x #input events touched

– (Weighted) cost of assembling the output data:
#events created

Cost of Sequence Operator
Cardinality of events of type X that are active in time
window, estimated as:
CX = rateX * window * type selectivity
CT1 = 10e/sec * 5sec * 1/10 = 5e
CT2 = 20e/sec * 5sec * 1/5 = 20e

Cost of accessing the input data:
CIn = CT1 * CT2 * ordering selectivity

= 5e * 20e * 1/2 = 50e2

Cost of accessing the output data:
COut = CIn * correlation selectivity

= 50e2 * 1/5 = 10e2

T1.id = T2.id
T2.ts – T1.ts ≤ 5sec

T1.temp > 40 T2.hum ≤ 25

SEQ

T1: T T2: H

Plan Transformations
Idea: Rewriting rules preserve semantics

– Fixed set of rules that is applicable
– Outcome of applying a rule is assessed by cost model
– Heuristic search instead of optimal solution

SEQ
NSEQ

A B D

DIS

C

PATTERN SEQ(A a, (!B b UNION !C c), D d)

PATTERN SEQ(A a, !(B b INTERSECT C c), D d)

Plan Reordering
Idea: Obtain most efficient operator nesting

– Nesting problem has optimal substructure
– Bottom-up approach, starting with optimal plan for pairs of event

types

EVENT SEQ(T t, H h1, H h2) T1: T T2: H T3: H

SEQ

T1: T T2: H T3: H

SEQ

T1: T T2: H T3: H

SEQ

SEQ

T1: T T2: H T3: H

Summary Tree-based Models
Trees of event operators…
…. as a model to define composite events
…. as a model to conduct event recognition

Enables optimisations of
physical plan

– Incorporate selectivities
– Plan may be changed

dynamically

Open: Comparison
to automata-based models

Part 3:
Logic-based models and methods

Logic-based models: overview

I Mainly used for modeling
I Declarative approach

I Specifies what not how

I Formal semantics of CER based on logic

I Di↵erent variants
I Support for static background knowledge
I Support for dynamic changes in the background knowledge
I Support for durative events
I Support for metric temporal constraints
I Support for out-of-order events
I ...

Logic-based models: overview

I Mainly used for modeling
I Declarative approach

I Specifies what not how

I Formal semantics of CER based on logic
I Di↵erent variants

I Support for static background knowledge
I Support for dynamic changes in the background knowledge
I Support for durative events
I Support for metric temporal constraints
I Support for out-of-order events
I ...

Logic-based models: overview

I Various approaches to event recognition
I Automata-based approaches
I Tree-based approaches
I Lazy evaluation
I ...

Logic-based models: outline

I Chronicle Recognition System

I TESLA / T-Rex

I Real-Time Event Calculus (RTEC)

I ETALIS

Main references:

A. Artikis, A. Skarlatidis, F. Portet and G. Paliouras. Logic-based event

recognition. The Knowledge Engineering Review 2012

G. Cugola and A. Margara. TESLA: a formally defined event specification

language. DEBS 2010

A. Artikis, M. Sergot and G. Paliouras. An Event Calculus for Event

Recognition. TKDE 2014

D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic. Stream reasoning and

complex event processing in ETALIS. Semantic Web 2012

CE as Chronicle

I Chronicle: a set of events interlinked by time constraints and
whose occurrence may depend on the context

I Chronicles are used to define CEs

Chronicle Recognition System

I CRS is based on reified temporal logic

I Discrete time
I Events + properties (to represent context information)

I They can have parameters

I Predicates for event occurrence, absence, repetition, ...

Chronicle Representation Algebra

Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at time T

changing the value of property F

from ?V1 to ?V2

noevent(E, (T1,T2)) Event E does not take place between
[T1,T2)

noevent(F:(?V1,?V2),(T1,T2)) No event takes place between [T1,T2)
that changes the value of property F

from ?V1 to ?V2

hold(F:?V, (T1,T2)) The value of property F is ?V between
[T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least N times
and at most M times between [T1,T2)

Chronicle Representation Language

chronicle abnormal vessel movement[?id](T2) {
event(speedChange[?id], T0)

event(speedChange[?id], T1)

event(speedChange[?id], T2)

T1 > T0

T2 > T1

T2 - T0 in [1, 20000]

noevent(turn[?id], (T0+1, T2))

}

Chronicle Representation Language

I Purely temporal reasoning: mathematical operators in the
atemporal constraints of the language are not allowed

I No spatial reasoning (distance)
I No use of background knowledge

I Universal quantification is not allowed
I Cannot express a property about all vessels in some area

Chronicle Representation Language

I Purely temporal reasoning: mathematical operators in the
atemporal constraints of the language are not allowed

I No spatial reasoning (distance)
I No use of background knowledge

I Universal quantification is not allowed
I Cannot express a property about all vessels in some area

Chronicle Recognition System: Semantics

Pure temporal reasoning makes CRS e�cient

Each CE definition is represented as a Temporal Constraint
Network, as below

turn [?id]
speedChange

[?id]

[1,2000]

Chronicle Recognition System: Compilation

I Constraint propagation in the Temporal Constraint Network
I Build the least constrained network

I Consistency checking
I Detect inconsistencies at compile time

[2, 5]

A

CA

B

[1, 6]

[0, 10]

[0, 10]

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

A

CA

B

[0, 8]

Chronicle Recognition System: Recognition

Recognition stage

I Partial CE instance evolution

I Forward (incremental) recognition

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

[0, 8]

6 98 106 16111611

A

C

B

A

A

A

B

C

C@10
→

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

time

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System: Partial instances

A B C
[1,3] [0,3]

timeA@1

A@1

B[2,4]

A@3

A@1

B[3,4]

A@3

B[4,6]

B@5

killed instance

A@3 B@5

C[5,8]

A@3

B[5,6]

d

u

p

l

i

c

a

t

e

d

Chronicle Recognition System

Recognition stage — partial CE instance management

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances

I The performance of CRS depends directly on the number of
partial CE instances

I To deal with out-of-order events, CRS keeps in memory partial
CE instances longer

Chronicle Recognition System

Recognition stage — partial CE instance management

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances

I The performance of CRS depends directly on the number of
partial CE instances

I To deal with out-of-order events, CRS keeps in memory partial
CE instances longer

Chronicle Recognition System

Recognition stage — partial CE instance management

I In order to manage all the partial CE instances, CRS stores
them in trees, one for each CE definition

I Each event occurrence and each clock tick traverses these
trees in order to kill some CE instances (tree nodes) or to
develop some CE instances

I The performance of CRS depends directly on the number of
partial CE instances

I To deal with out-of-order events, CRS keeps in memory partial
CE instances longer

Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems

I Many of its features appear in modern event processing
systems

I E�cient and scalable event recognition

I But: it is a purely temporal reasoning system

Chronicle Recognition System: Summary

I One of the earliest and most successful formal event
processing systems

I Many of its features appear in modern event processing
systems

I E�cient and scalable event recognition

I But: it is a purely temporal reasoning system

TESLA

Define Fire(area: string, temp: double)
From Humidity(percentage < 25 and area = $a) and

last Temp(value > 40 and area = $a)
within 5 min from Humidity

where area = Temp.area, temp = Temp.value

TESLA – Selection Policy

Define Fire(area: string, temp: double)
From Humidity(percentage < 25 and area = $a) and

last Temp(value > 40 and area = $a)
within 5 min from Humidity

where area = Temp.area, temp = Temp.value

Combine Humidity only with the most recent Temp that satisfies
the constraints

TESLA – Selection Policy

Define Fire(area: string, temp: double)
From Humidity(percentage < 25 and area = $a) and

each Temp(value > 40 and area = $a)
within 5 min from Humidity

where area = Temp.area, temp = Temp.value

Combine Humidity with all Temp in the window of 5 minutes that
satisfy the constraints

TESLA – Consumption Policy

Define Fire(area: string, temp: double)
From Humidity(percentage < 25 and area = $a) and

last Temp(value > 40 and area = $a)
within 5 min from Humidity

where area = Temp.area, temp = Temp.value
consuming Temp

Temp is not available for further triggering of the rule

TESLA: Semantics

I All the operators have formal semantics
I Based on metric temporal logic formulas

I Temporal patterns
I Starting from an anchor point that determines when the

complex event occurs
I Temporal relations that specify when –in the past– other

events must occur

TESLA / T-Rex: Delayed Processing

I Initial implementation based on automata
I AIP: Automata Incremental Processing

I Second (current) version based on lazy evaluation
I CDP: Column-based Delayes Approach
I Similar to the temporal focusing optimization in CRS
I Always wait for an event that might terminate a valid sequence

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

A B C
[0,5] [0,3]

A@1

A@2

A@4

A@6

B@3

B@8

C@9

TESLA / T-Rex: Delayed Processing

I Avoid useless computations

I Avoid duplications
I Simple memory layout ! Arrays

I Cache friendly!

TESLA / T-Rex: Delayed Processing

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2 3 4 5

Av
g

Pr
oc

es
si

ng
 T

im
e

(m
ic

ro
se

c)

Number of Events

AIP
CDP

Figure: Each-within

TESLA / T-Rex: Delayed Processing

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 3 4 5

Av
g

Pr
oc

es
si

ng
 T

im
e

(m
ic

ro
se

c)

Number of Events

AIP
CDP

Figure: Last-within

TESLA / T-Rex: Delayed Processing

I Avoid useless computations

I Avoid duplications
I Simple memory layout ! Arrays

I Cache friendly!

I Suitable for data parallelism

TESLA / T-Rex: Delayed Processing

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100

Pr
oc

es
si

ng
 T

im
e

(m
s)

Size of Windows (thousands)

AIP Each-Within
CDP CPU Each-Within
CDP GPU Each-Within

AIP Last-Within
CDP CPU Last-Within
CDP GPU Last-Within

TESLA / T-Rex: Summary

I Formal semantics based on metric temporal logic formulas

I Flexible event selection and consumtion policies
I E�cient and scalable event recognition

I Support for parallel architectures
I But: does not support out-of-order events

I But: does not support reasoning on background knowledge

TESLA / T-Rex: Summary

I Formal semantics based on metric temporal logic formulas

I Flexible event selection and consumtion policies
I E�cient and scalable event recognition

I Support for parallel architectures
I But: does not support out-of-order events

I But: does not currenty support reasoning on background
knowledge

TESLA / T-Rex: Summary

I Formal semantics based on metric temporal logic formulas

I Flexible event selection and consumtion policies
I E�cient and scalable event recognition

I Support for parallel architectures
I But: does not support out-of-order events

I But: does not support reasoning on background knowledge

I But: does not support durative events

Event Calculus

I A logic programming language for representing and reasoning
about events and their e↵ects

I Key components
I event (typically instantaneous)
I fluent: a property that may have di↵erent values at di↵erent

points in time

I Built-in representation of inertia
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime

Event Calculus

I A logic programming language for representing and reasoning
about events and their e↵ects

I Key components
I event (typically instantaneous)
I fluent: a property that may have di↵erent values at di↵erent

points in time

I Built-in representation of inertia
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime

Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T) The value of fluent F is V at time T

union all([J
1

, . . . , J
n

], I) I =(J
1

[. . . [J
n

)

intersect all([J
1

, . . . , J
n

], I) I =(J
1

\ . . . \ J
n

)

relative complement all I = I 0 \ (J
1

[. . . [J
n

)
(I 0, [J

1

, . . . , J
n

], I)

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(CE , T) terminatedAt(CE , T)
happensAt(E

In

1

, T), happensAt(E
T

1

, T),
[conditions] [conditions]

.
initiatedAt(CE , T) terminatedAt(CE , T)

happensAt(E
In

i

, T), happensAt(E
T

j

, T),
[conditions] [conditions]

where

conditions:

0�KhappensAt(E
k

, T),
0�MholdsAt(F

m

, T),
0�N

atemporal-constraint

n

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(CE , T) terminatedAt(CE , T)
happensAt(E

In

1

, T), happensAt(E
T

1

, T),
[conditions] [conditions]

.
initiatedAt(CE , T) terminatedAt(CE , T)

happensAt(E
In

i

, T), happensAt(E
T

j

, T),
[conditions] [conditions]

CE recognition

time

0

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(CE , T) terminatedAt(CE , T)
happensAt(E

In

1

, T), happensAt(E
T

1

, T),
[conditions] [conditions]

.
initiatedAt(CE , T) terminatedAt(CE , T)

happensAt(E
In

i

, T), happensAt(E
T

j

, T),
[conditions] [conditions]

CE recognition:

time

0

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(CE , T) terminatedAt(CE , T)
happensAt(E

In

1

, T), happensAt(E
T

1

, T),
[conditions] [conditions]

.
initiatedAt(CE , T) terminatedAt(CE , T)

happensAt(E
In

i

, T), happensAt(E
T

j

, T),
[conditions] [conditions]

CE recognition:

time

0

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(CE , T) terminatedAt(CE , T)
happensAt(E

In

1

, T), happensAt(E
T

1

, T),
[conditions] [conditions]

.
initiatedAt(CE , T) terminatedAt(CE , T)

happensAt(E
In

i

, T), happensAt(E
T

j

, T),
[conditions] [conditions]

CE recognition: holdsFor(CE , I)

time

0

CE Definitions in RTEC: Simple Fluents

CE definition:

initiatedAt(leaving object(P ,Obj)= true, T)
happensAt(appear(Obj), T),
holdsAt(inactive(Obj)= true, T),
holdsAt(close(P ,Obj)= true, T),
holdsAt(person(P)= true, T)

terminatedAt(leaving object(P ,Obj)= true, T)
happensAt(disappear(Obj), T)

CE recognition: holdsFor(leaving object(P ,Obj)= true, I)

CE Definitions in RTEC: Statically Determined Fluents

holdsFor(CE , I)
holdsFor(F

1

, I
F

1

),
. . . ,
holdsFor(F

f

, I
F

f

),
interval manipulation

1

(I↵, . . . , I!),
. . . ,
interval manipulation

k

(I
A

, . . . , I
⌦

)

where

interval manipulation(I
1

, . . . , I
n

, I) :
union([I

1

, . . . , I
n

], I)
intersection([I

1

, . . . , I
n

], I)
relative complement(I

1

, [I
2

, . . . , I
n

], I)

CE Definitions in RTEC: Statically Determined Fluents

CE definition:

holdsFor(abnormal(Vessel)= true, I)
holdsFor(slowMotion(Vessel)= true, I

1

),
holdsFor(gap(Vessel)= true, I

2

),
holdsFor(stop(Vessel)= true, I

3

),
union([I

1

, I
2

, I
3

], I)

Shorthand:

abnormal(Vessel) i↵
slowMotion(Vessel) or
gap(Vessel) or
idle(Vessel)

CE Definitions in RTEC: Statically Determined Fluents

CE definition:

holdsFor(abnormal(Vessel)= true, I)
holdsFor(slowMotion(Vessel)= true, I

1

),
holdsFor(gap(Vessel)= true, I

2

),
holdsFor(stop(Vessel)= true, I

3

),
union([I

1

, I
2

, I
3

], I)

Shorthand:

abnormal(Vessel) i↵
slowMotion(Vessel) or
gap(Vessel) or
idle(Vessel)

CE Hierarchies

CE Hierarchies: Caching

CE Hierarchies: Caching

CE Hierarchies: Caching

CE Hierarchies: Caching

Run-Time Event Recognition

Real-time decision-support in the presence of

I Very large SDE streams

I Non-sorted SDE streams
I SDE revision

I Need to retract, similar to database materialization update

I Very large CE numbers

Run-Time Event Calculus: Windowing

I Windowing improves the performance of real-time event
recognition

I Event recognition repeated periodically
I User-defined period

I At evaluation time T only events that occurred in
(T �W ,T] are considered

I Incremental algorithm with addition and retraction
I Incremental materialization of answers

Run-Time Event Calculus: Summary

I The full power of logic programming is available
I Complex atemporal computations
I Combination of events streams with static knowledge

I Very e�cient reasoning
I Even when event streams arrive with a delay
I Even in the presence of large specifications

I But: The Event Calculus does not have built-in support for
long-term temporal constraints

Run-Time Event Calculus: Summary

I The full power of logic programming is available
I Complex atemporal computations
I Combination of events streams with static knowledge

I Very e�cient reasoning
I Even when event streams arrive with a delay
I Even in the presence of large specifications

I But: The Event Calculus does not have built-in support for
long-term temporal constraints

Run-Time Event Calculus: Summary

I The full power of logic programming is available
I Complex atemporal computations
I Combination of events streams with static knowledge

I Very e�cient reasoning
I Even when event streams arrive with a delay
I Even in the presence of large specifications

I But: The Event Calculus does not have built-in support for
long-term temporal constraints

ETALIS: Overview

I As in RTEC, full power of logic programming
I Complex atemporal computation
I Combination of event streams with static knowledge

I Events have duration
I Support for Allen’s temporal operators

ETALIS: Overview

I As in RTEC, full power of logic programming
I Complex atemporal computation
I Combination of event streams with static knowledge

I Events have duration
I Support for Allen’s temporal operators

ETALIS: Temporal operators

ETALIS: Example

DangerousAcceleration(X)
Speed(X, Y1) SEQ Speed(X,Y2) WHERE Y2 > Y1 ⇥ 1.5

I Lack of metric temporal constraints!

ETALIS: Recognition

I Based on trees

I Binarization of operators

ETALIS: Recognition

E A SEQ B SEQ C

Translated to:

E E1 SEQ C

E1 A SEQ B

ETALIS: Recognition

E E1 SEQ C

E1 A SEQ B

I Transalted to Prolog rules that modify a database of facts

I When A SEQ B is detected, E1 is added to the database

I When to retract E1?
I Depends on the consumption policy

ETALIS: Recognition

E E1 SEQ C

E1 A SEQ B

I Transalted to Prolog rules that modify a database of facts

I When A SEQ B is detected, E1 is added to the database
I When to retract E1?

I Depends on the consumption policy

ETALIS: Recognition

E E1 SEQ C

E1 A SEQ B

I Transalted to Prolog rules that modify a database of facts

I When A SEQ B is detected, E1 is added to the database
I When to retract E1?

I Depends on the consumption policy

ETALIS: Summary

I Full power of logic programming

I Events with duration

I Complex temporal operators

I E�cient event recognition based on standard Prolog

I But: no build-in predicate to change the value of some global
properties

I But: no metric temporal operators

ETALIS: Summary

I Full power of logic programming

I Events with duration

I Complex temporal operators

I E�cient event recognition based on standard Prolog

I But: no build-in predicate to change the value of some global
properties

I But: no metric temporal operators

Outlook

Requirements for Complex Event Recognition Languages

I Instantaneous events.
I Durative events.

I Open intervals.

I Context information.

I Relational events.

I No limit on the temporal distance between the events
comprising a composite activity (no ‘WITHIN’ constraint).

I Concurrency constraints.

I Atemporal reasoning.

I Event hierarchies.

Outlook

There is a need for a systematic, formal comparison of:

I language expressivity;

I recognition complexity.

Some steps towards this have already been taken.

Goal: find the appropriate language (subset) to address the
requirements of a given application.

Outlook for Automata

Recall:
CER automata are symbolic transducers equipped with registers.

I Is there a general evaluation strategy for this model?

I What fragments of automata can be run e�ciently?

I Is there a language capturing exactly the CER patterns that
can be expressed by these automata?

I What is the complexity of compiling queries into automata ?

I How do di↵erent operators a↵ect this complexity?

Outlook for Tree-based Models

Recall:
Trees of event operators serve as an operational model for event
recognition.

I What is the language that can be represented in this model?

I What is the runtime complexity?

I How to determine whether to use tree-based models or
automata?

I What about hybrid approaches that combine both types of
models?

Outlook for Logic-Based Models

Recall:
Logic based models provide formal semantics to CER

I What is the language that can be represented in logic-based
models?

I What is the relation between the di↵erent logic-based
formalisms?

I What is the runtime complexity of each model?
I How does each feature contribute to the complexity?

I Durative events
I Out-of-order events
I Background knowledge
I ...

I What is the most e�cient recognition algorithm for each
model?

