
Noname manuscript No.
(will be inserted by the editor)

Deployment Strategies for Distributed Complex Event
Processing

Gianpaolo Cugola · Alessandro Margara

Received: July 19th, 2012 / Accepted: date

Abstract Several Complex Event Processing (CEP) middleware solutions
have been proposed in the past. They act by processing primitive events gen-
erated by sources, extracting new knowledge in the form of composite events,
and delivering them to interested sinks.

Event-based applications often involve a large number of sources and sinks,
possibly dispersed over a wide geographical area. To better support these sce-
narios, the CEP middleware can be internally built around several, distributed
processors, which cooperate to provide the processing and routing service.

This paper introduces and compares different deployment strategies for
a CEP middleware, which define (i) how the processing load is distributed
over different processors and (ii) how these processors interact to produce the
required results and to deliver them to sinks.

Our evaluation compares the presented solutions and shows their benefits
with respect to a centralized deployment, both in terms of network traffic and
in terms of forwarding delay.

Keywords Complex Event Processing · Distributed Processing · Event
Based Systems · Routing

Gianpaolo Cugola
Dipartimento di Elettronica e Informazione (DEI), Politecnico di Milano,
Piazza Leonardo Da Vinci, 32 - 20133 Milan, Italy
E-mail: cugola@elet.polimi.it

Alessandro Margara
Dipartimento di Elettronica e Informazione (DEI), Politecnico di Milano,
Piazza Leonardo Da Vinci, 32 - 20133 Milan, Italy
E-mail: margara@elet.polimi.it



2 Gianpaolo Cugola, Alessandro Margara

1 Introduction

Several complex systems operate by observing a set of primitive events that
happen in the external environment, interpreting and combining them to iden-
tify higher level composite events, and finally sending the notifications about
these events to the components in charge of reacting to them, thus determining
the overall system’s behavior. The general architecture of such event-based ap-
plications is shown in Figure 1. At the peripheral of the system are the sources
and the sinks. The former observe primitive events and report them, while the
latter receive composite event notifications and react to them. At the center of
the system is the Complex Event Processing (CEP) middleware (or system),
which is responsible for processing and routing events from sources to inter-
ested sinks. It operates by interpreting a set of event definition rules, which
describe how composite events are defined from primitive ones.

Event-based applications usually involve a large number of sources and
sinks, possibly dispersed over a wide geographical area. Typical examples are
sensor networks for environmental monitoring [9] and financial applications, re-
quiring a continuous analysis of stocks to detect trends [20]. To better support
these scenarios, the CEP middleware can be internally built around several,
distributed processors, connected together to form an overlay network, and
cooperating to provide the processing and routing service.

This paper introduces and compares different deployment strategies for
CEP. A deployment strategy defines (i) how the processing load is distributed
over processors and (ii) how these processors interact to produce the required
results and to deliver them to sinks.

The first aspect is often called operator placement : given a network of pro-
cessors and a set of rules, it finds the best mapping of the operators defined in
rules on available processors. Operator placement may pursue different goals,
e.g., reduce the latency required to deliver notifications to interested parties,
or minimize the usage of network resources. In the last few years, different so-
lutions have been proposed for operator placement [26]. The problem is known
to be extremely complex to solve, even for small instances with a reduced num-
ber of processors and rules. Accordingly, existing approaches are often based
on approximated optimization algorithms or heuristics; moreover, they usually
rely on a centralized decider, which collects all the relevant information about
the network status and locally computes a solution to the problem. Only a few
proposals have considered a decentralized algorithm for solving the operator
placement [32].

On the other hand, operator placement is only part of the problem: when
the processing effort is split among different processors, it also becomes neces-
sary to precisely define the protocols that govern the interaction among them,
specifying how rules and subscriptions are deployed, how primitive events are
forwarded from the sources to the processors, and how composite events are
finally delivered to sinks. These issues are usually not considered by existing
CEP systems: most of them are based on a centralized deployment, in which
all the processing is performed on a single machine (e.g. [8,2]). Even when



Deployment Strategies for Distributed Complex Event Processing 3

CEP MiddlewareSources Sinks

Event Definition Rules

Fig. 1 The architecture of a CEP application

distributed processing is allowed, the communication among processors often
requires manual configuration [5].

The solutions presented in this paper address all these problems and are
explicitly tailored to large scale distributed scenarios: they take into account
the topology of the processing network as well as the location of event sources
and their generation rates. Moreover, they do not rely on a centralized decider:
each processor autonomously decides which parts of the processing to execute
locally and which parts can and should be delegated to other processors.

These strategies have been fully implemented as part of our T-Rex CEP
middleware [16,17], including the protocols needed to organize processors into
an overlay network, to deploy rules and subscriptions, and to deliver notifica-
tions from sources to sinks. We provide an evaluation and comparison of the
strategies implemented: we measured significant advantages with respect to a
centralized solution, both in terms of network traffic and forwarding delay. We
also show how these two metrics are often conflicting, making it difficult to
optimize both of them into a single strategy.

The rest of the paper is organized as follows: Section 2 introduces the
event, subscriptions, and rule models we consider in this paper; Section 3
and Section 4 present our deployment strategies in details and evaluates their
properties in an emulated network. Finally, Section 5 surveys related work and
Section 6 provides some conclusive remarks.

2 Background

Events and subscriptions models. We assume events, i.e., things of in-
terest, to occur instantaneously at some points in time. In order to be un-
derstood and processed, events are observed by sources and encoded in event
notifications (or simply events). We assume that each event notification has an
associated type, which defines the number, order, names, and types of the at-
tributes that build the notification. Notifications have also a timestamp, which
represents the occurrence time of the event they encode. In the following we
assume that processors receive events in timestamp order: mechanisms to cope
with out-of-order arrivals of events have been discussed in the past and can
be adopted to ensure this property [39]. As an example, the air temperature
in a given area at a specific time can be encoded into the following event
notification:

Temp@10(area="A1", value=24.5)



4 Gianpaolo Cugola, Alessandro Margara

Sources CEP Middleware Sinks

Advertise()
Publish() Subscribe()

Composite Events
Definition Rules

Fig. 2 The reference CEP middleware architecture used in this paper

Figure 2 summarizes the key architectural components and we consider in
this paper and their interactions.

Throughput the paper, we represent sources as square boxes. As we will
better show in Section 3, our deployment strategies rely on the knowledge
of the type of events produced at each source. Accordingly, we ask sources
to advertise the type of the primitive events they will publish. This builds a
contract between the sources and the T-Rex system: only events whose type
has been advertised will be processed1.

The interests of sinks (represented as diamond boxes) are modeled through
subscriptions, including a type and a set of constraints. A subscription s
matches an event notification e if s has the same type as e and all the con-
straints expressed in s are satisfied by the attributes in e. As an example, the
following subscription matches the previous temperature notification.

Temp(area="A1", value>=12)

Sinks can subscribe directly to primitive events published by sources, or
to composite events. The latter are specified by a set of event definition rules,
which describe how composite events are generated from primitive ones.

Rule definition language. In this paper, we consider rules written using the
TESLA language [15]; since it includes all the typical operators used for CEP,
we believe this choice will not impact the generality of our results.

We present the main features of TESLA through an example. Consider an
environment monitoring application that processes information coming from
a sensor network. Sensors notify their position, the air temperature they mea-
sure, and the presence of smoke and rain. Now, suppose a user wants to detect
the presence of fire. She has to teach the system to recognize such critical
situation starting from the raw data measured by sensors. Depending on the
environment, the application requirements, and the user preferences, the pres-
ence of fire can be detected in many different ways. Here we present three
possible definitions of the fire event and we use them to illustrate the opera-
tors supported by TESLA.

1 The use of advertisements has been first introduced (and widely adopted) by publish-
subscribe systems [11].



Deployment Strategies for Distributed Complex Event Processing 5

D1. There is fire when there is smoke and a temperature higher than 45 degrees
in the same area of smoke (detected within 5 min from smoke). The fire
notification has to embed the temperature actually measured.

D2. There is fire in presence of a temperature higher than 45 degrees and in
absence of rain (in the last hour).

D3. There is fire when there is smoke and the average temperature in the last
5 min. in the same area is higher than 45 degrees.

Each TESLA rule has the following general structure:

Rule R

define CE(att 1: Type 1, .., att n: Type n)

from Pattern

where att 1 = f 1, .., att n = f n

Intuitively the first two lines define a composite event from its constituents,
specifying its structure, i.e., its type and the name and type of its attributes,
and the pattern of events that lead to the composite one. Finally, the where

clause defines the actual values of the composite event attributes using a
set of functions f 1,..,f n, which may depend on the arguments defined in
Pattern.

If we carefully look at the definition of fire D1 given above, we may notice
that it is ambiguous. Indeed, it is not clear what happens if the Smoke event is
preceded by more than one Temp event. In such cases we say that the selection
policy of the rule is ambiguous [18,13]. TESLA is both very rigorous and very
expressive about this point, allowing users to precisely define the selection
policy they have in mind. By using the each-within operator, Rule R1 below:

Rule R1

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and

each Temp(area=$a and value>45)

within 5 min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

adopts a multiple selection policy: when a Smoke event is detected it notifies
as many Fire events as they are the Temp events observed in the last 5 min.
Other policies can be encoded by substituting the each-within operator with
the last-within or the first-within operators, or with their generalized
versions n-last-within and n-first-within. As an example, in presence of
three temperature readings greater than 45 degrees followed by a Smoke event,
Rule R1 would notify three Fire events, while adoption of the last-within

would result in a single Fire notification, with the last temperature read.
Besides these aspects, Rule R1 shows how in TESLA the occurrence of a com-
posite event is always bound to the occurrence of a simpler event (Smoke in
our example), which implicitly determines the time at which the new event
is detected. This anchor point is coupled with other events (Temp in our ex-
ample) through ad-hoc operators, like the each-within, which capture the



6 Gianpaolo Cugola, Alessandro Margara

temporal relationships that join together events in sequences. Finally rule R1
also provides an example of parameterization, which is modeled in TESLA by
using the variable $a to bind the values of attribute area in different events.

The second definition of Fire introduced above shows how time-based
negations can be expressed in TESLA:

Rule R2

define Fire(area: string, measuredTemp: double)

from Temp(area=$a and value>45) and

not Rain(area=$a) within 5 min. from Temp

where area=Temp.area and measuredTemp=Temp.value

Beside time-based negations, TESLA allows interval-based negations, by
requiring a specific event not to occur between other two events.

Finally, Rule R3 shows the use of aggregates (i.e., the function Avg) to
express the Fire definition D3. Also aggregates can be time-based (as in this
example) or interval-based.

Rule R3

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and

45 < $t=Avg(Temp(area=$a).value

within 5 min. from Smoke)

where area=Smoke.area and measuredTemp=$t

3 Deployment Strategies

This section presents the deployment strategies considered in this paper. For
ease of exposition, we separately describe: (i) how processors organize them-
selves into one or more processing trees; (ii) how advertisements and subscrip-
tions are forwarded among processors; (iii) how TESLA rules are recursively
partitioned and distributed among available processors; (iv) how notifications
are forwarded; (v) how traffic information can be used to limit event trans-
mission.

For simplicity, the following discussion assumes that processors and links
cannot fail (i.e., the communication is reliable). However, all the mechanisms
described below can be extended to detect and react to failures.

Differently from some previously proposed solutions, which build a dis-
tributed complex event processing service on top of a publish-subscribe mes-
saging network [34,33], our strategies strictly integrate the task of routing and
forwarding events and the task of process and combine primitive events to
detect and generate composite ones.

3.1 Building Processing Trees

We consider a set of processors P connected with each others at two levels. (i)
On top of the physical network, is the overlay network. We do not impose any



Deployment Strategies for Distributed Complex Event Processing 7

condition on its structure: processors can be connected in any way, forming a
generic graph. (ii) To simplify routing, our deployment strategies organize pro-
cessors into one or more processing trees on top of the overlay network. More
precisely, they use a processing tree to collect primitive events from sources
(the leaves) and to filter and (partially) process them as they move toward
the root of the tree, where composite events are finally detected. This enables
incremental evaluation of rules at intermediate processors, which reduces the
amount of information flowing along the tree, as well as the processing load at
the root processor. Moreover, the same tree adopted for detecting a composite
event ce is also used to distribute ce to all the interested sinks2.

Since we want to minimize latency in collecting information from sources
and delivering results to sinks, we build Shortest Path Trees using the link
delay as a cost metric. In particular, to build the tree Tp rooted at processor
p, p sends a special message CreateTreep to all its neighbors. When a processor
p′ receives such a message it behaves as follows.

– If p′ receives the message for the first time, it marks the sender s as its
father in Tp, sends an ACK message to s, and forwards the message to all
its neighbors except s.

– If p′ already received the message, it sends a NACK message to the sender
s.

When a processor p′ ∈ P receives an ACK, it marks the sender as its child
in Tp. p′ obtains a complete knowledge about its children in the tree as soon as
it receives an ACK or NACK message from all its neighbors. This protocol allows
all processors to obtain local knowledge about Tp, i.e., their father and the set
of their children.

3.2 Single Tree vs. Multiple Trees

We consider two classes of deployment strategies. The first one organizes all
processors into a single processing tree: in these strategies one processor ` is
elected as the network leader. All events move from sources to ` going up
along T`, and they are incrementally evaluated according to the TESLA rules
deployed in the system. When they arrive to `, the processing is complete,
the corresponding composite events are generated and delivered to sinks by
flowing back down T`.

The second class of strategies creates a tree for each sink and primitive
events flow from the sources along these different trees. More precisely, if a sink
s is interested in a composite event ce, all primitive events that contribute to
ce move from their sources up along Ts. Processing is performed incrementally
on each tree. When a composite event reaches the root of a processing tree
there is no need to further distribute it, since the root of the tree coincides

2 For simplicity, in the following discussion we assume sinks to be interested only in
composite events. Primitive events can be easily handled using well known protocols for
content-based routing (see for example [10,19]).



8 Gianpaolo Cugola, Alessandro Margara

with the interested sink, and a different tree is created for each sink. On the
one hand, this removes the need for spreading composite events once they have
been detected. On the other hand, this approach duplicates primitive events
by forwarding them over multiple trees.

1 2

3 6

5

4

7

T

SF F

T

T
S S

F F

(a) Single Tree

1 2

3 6

5

4

7

T

SF F

T

T
S S

T T

S

(b) Multiple Trees

Fig. 3 Single Tree vs. Multiple Trees

To clarify the differences between the two classes of strategies consider
Figure 3. It represents a sample overlay network with 7 processors. Now assume
a single TESLA rule has been deployed in the system, which processes Smoke
(S) and Temp (T) events to detect possible occurrences of Fire (F). There
is a single source of Smoke, connected to processor 7, and a single source of
Temp, connected to processor 6, while there are two sinks interested in Fire,
connected to processor 1 and 5, respectively.

An example of single tree strategy is shown in Figure 3(a), where processor
2 is chosen as the network leader (links of T` are identified with thick lines).
Temp and Smoke events flow from their sources up along T2 (following single
arrows in figure). Here they are combined to detect Fire; finally, Fire no-
tifications are delivered from processor 2 to sinks 1 and 5 (following double
arrows in figure).

An example of a multiple trees strategy is shown in Figure 3(b). One tree
is built for each sink interested in Fire (i.e., 1 and 5). Sources forward events
along both T1 and T5: for example 6 sends Temp events to 5 using the path
6-4-2-5, while 1 uses the path 6-4-2-1. Since the first three processors are in
common, a single copy of each event notification is actually delivered along
this sub-path. Similarly, source 7 delivers Smoke notifications both to 1 and 5.
In this case, Fire events need not be forwarded, since they are autonomously
detected at each sink.

3.3 Advertisement and Subscription Tables

As we said in Section 2, we require sources to notify the middleware about
the set of event types they will publish, using Advertisement messages. We



Deployment Strategies for Distributed Complex Event Processing 9

show how advertisements are forwarded on a single processing tree: the same
procedure is applied for each tree in the case of multiple trees strategies.

1 2

3 6

5

4

7

5 types(5) ∪ types(7)
4 types(4) ∪ types(6)
2 types(2)

Event TypesProcessor
Advertisement Table

Fig. 4 Forwarding of advertisements

Figure 4 considers the tree T1 rooted at processor 1: advertisements are for-
warded from the sources up along T1. Each processor saves all the event types
contained in the advertisements coming from its descendants in an advertise-
ment table (one for each defined tree). In Figure 4 we show the advertisement
table of processor 2 by denoting the set of message types advertised by pro-
cessor x as types(x).

As in the case of advertisements, subscriptions move from sinks up to
the root of the processing tree3; they are combined at each step and stored
in a local subscription table at each processor. Subscriptions are then used
to forward (composite) event notifications along the opposite path, from the
root down to the sinks. When receiving an event notification e, each processor
computes the set of subscriptions matching e to determine which children have
to receive e.

3.4 Rule Deployment

To enable incremental evaluation of primitive events as they flow from the
sources to the root of a processing tree, rules must be recursively partitioned
into partial rules, moving in the opposite direction. The partitioning algorithm
exploits the information stored in the advertisement tables of each processor.

In the case of a single tree strategy, rules are forwarded to the root of the
tree, which is responsible for partitioning them and distributing the resulting
“partial rules”. In the case of multiple trees strategies, rules are accessible by
every processor p ∈ P : they are actually stored at one or more processors,
but p can download them on demand. When a sink s connected to processor
p issues a subscription for composite events of type c, p retrieves all the rules
that generate events of type c, and partitions and distributes them along its
own processing tree Tp.

Partitioning TESLA rules. For the sake of clarity, we present the parti-
tioning algorithm incrementally, through examples that progressively include
all the features offered by TESLA. As a first example, consider Rule R4

3 Forwarding of subscriptions is required only when a single tree strategy is adopted.
Multiple trees strategies do not require subscriptions to be forwarded, since each sink is
already at the root of its own tree, where composite events are detected.



10 Gianpaolo Cugola, Alessandro Margara

Rule R4

define CompEvent()

from A() and last B() within 5 min. from A

and last C() within 5 min. from B

and last D() within 5 min. from C

and last E() within 5 min. from D

and the processing tree T1 shown in Figure 5. 1 is the root of the tree and
there are three sources: 3 produces primitive events of type A and B; 4 produces
events of type C and E; 5 produces events of type D. This information is stored
in the advertisement table of processor 2; since advertisements are combined
at each level of the tree, 1 has a single entry in its advertisement table, stating
that all types of events (A, B, C, D, and E) come from 2.

1 2

3

4

5

A, B

C, E

D

Fig. 5 Rule Deployment: an Example

In this scenario, Rule R4 is partitioned as follows: by looking at its adver-
tisement table, 1 observes that 2 has all the information needed to correctly
process the entire rule R4. Accordingly, it sends the complete rule to 2, del-
egating the entire processing (including the generation of composite events)
to it. 2 looks at the advertisements coming from its children: none of them
produces all the events required to process Rule R4. Accordingly, 2 remains
the responsible for producing composite events. It splits Rule R4 into partial
rules, and forwards them to processors 3, 4, and 5.

Partial rules include a pattern but do not generate composite events: they
are used to limit as much as possible the number of event notifications that are
forwarded up along the processing tree. When a processor p, responsible for
processing a partial rule R′, receives a set of primitive events PE that satisfy
the pattern in R′, it forwards all events in PE to its father.

Consider for example processor 3: its clients are the only sources for events
of type A and B. To correctly process Rule R4, processor 2 does not need to
receive all events of type A and B, but only those notifications of events A that
are preceded by an event B in the previous 5 minutes; moreover, since the
last-within operator is used, only the last B event before each A is relevant.
Accordingly, 2 creates the following partial rule for 3.

A() and last B() within 5 min. from A

Similarly, 2 does not need to receive all events of type C, but only those
preceeded by an event of type E. Accordingly, it creates and sends the following
partial rule to 4.



Deployment Strategies for Distributed Complex Event Processing 11

C() and each E() within 10 min. from C

C and E are not contiguous elements in the sequence defined by Rule R4,
but they are separated by event D, which is not produced by the sources of
processor 4. Accordingly, the partial rule considers a timing constraints that
sums the time limits between C and D together with the time limit between D

and E. Similarly, the local knowledge of processor 4 is not sufficient to evaluate
the single selection constraint on E; for this reason, the partial rule adopts
the each-within operator, capturing all notifications of E followed by a C

event within 10 minutes. Finally, processor 5 receives the following partial
rule, asking for all events of type D4.

D()

The partitioning algorithm described above is applied recursively: partial
rules are split into other partial rules, until all sources have been reached.

Handling Events from Multiple Sources. We now describe how the par-
titioning algorithm changes when events are produced at multiple sources.
Consider again Rule R4 and the processing tree T1 represented in Figure 6.

1
2

3 C, D, E

A, B, C

Fig. 6 Handling Events from Multiple Sources

At a first sight, it may be tempting to split Rule R4 into two partial rules,
one involving A, B, and C (for processor 2), and one involving C, D, and E (for
processor 3). However, neither 2, nor 3 receive all events of type C, so they
may produce wrong results if they consider C during processing. It is processor
1 that is responsible for combining events of type C with the others. More in
general, the detection of a certain type t of events may be delegated to a child
c in the processing tree only when c is the only one processor that advertises
type t. Accordingly, in the situation shown in Figure 6, Rule R4 is split into
three partial rules. The first one, involving events A and B, is forwarded to 2:

A() and last B() within 5 min. from D

The second one, involving events D and E, is forwarded to 3:

D() and last E() within 5 min. from D

The last one, involving events of type C, is forwarded to both 2 and 3: C().

Handling Parameters. TESLA rules may include parameters that bind the
content of different primitive events. While partitioning a rule, if a parameter

4 Notice that, while the example above only considers the types of events, our strategies
also consider the constraints on the content of events expressed in rules during partitioning.



12 Gianpaolo Cugola, Alessandro Margara

par involves only events that are captured by a partial rule R′, than par is
added to R′. Otherwise, if par involves events from different rules, it cannot
be attached to any of them; in this case par is checked at a processor higher
in the tree, where all involved primitive events are received.

Consider for example Rule R5 below and the two processing trees in Fig-
ure 7.

Rule R5

define CompEvent()

from A(v=$x) and last B(v=$x) within 5 min. from A

and last C() within 5 min. from B

1
2

3 C

A, B

(a)

1
2

3 B, C

A

(b)

Fig. 7 Handling Parameters

In Figure 7(a), both events of type A and B come from the same processor
2. In this case the parameter can be added to the partial rule sent to 2, which
becomes:

A(v=$x) and last B(v=$x) within 5 min. from A

On the contrary, in Figure 7(b) events of type A come from 2, while events
of type B come from 3. Accordingly, the partial rule sent to 2 (i.e., A()) cannot
refer to the parameter, and the same applies to the partial rule sent to 3:

B() and last C() within 5 min. from B

Processor 1 remains responsible for detecting Rule R5 and for checking the
values of attribute v in events A and B.

Handling Negations. Similarly to parameters, negations can be attached
to partial rules only if they include all the primitive events used to specify
their time bound. Consider for example Rule R6 and the processing trees in
Figure 8.

Rule R6

define CompEvent()

from A() and last B() within 5 min. from A

and last C() within 5 min. from B

and not D() between C and B

In Figure 8(a) both events B and C come from the same processor as the
negated event D. Accordingly, we can include the negation inside the partial
rule delivered to processor 3, which becomes:



Deployment Strategies for Distributed Complex Event Processing 13

1
2

3 B, C, D

A

(a)

1
2

3 C, D

A, B

(b)

Fig. 8 Handling Negations

B() and last C() within 5 min. from B

and not D() between C and B

On the contrary, in Figure 8(b), events of type B and C are detected by two
different processors. In this case, the negation cannot be included as part of
the partial rule for 3. All events of type D have to be delivered to 1, which is
responsible for processing the negation. Accordingly, 2 receives the following
partial rule:

A() and last B() within 5 min. from B

while 3 receives two different partial rules, one for events of type C (i.e., C()),
and one for events of type D (i.e., D()).

Computing Aggregates. In the deployment strategies described in this
work, the aggregates included in a rule R are always computed by the pro-
cessor responsible for generating composite events for R. In the case of rules
involving complex aggregates over large volumes of data, it would be possible
to modify this behavior by including special messages between processors that
deliver the (partial) results of aggregates. Several solutions have been proposed
in the past to optimize aggregates computation in distributed systems [22,23],
and some of them are explicitly tailored for event-based systesm [21].

We plan to explore this aspect in the near future. What we can anticipate
is that in our experience processing does not introduce a significant delay [16,
17], especially if compared with the time required to forward information on
a wide area network. Accordingly, we do not expect to get relevant benefits
from incremental evaluation of aggregates. On the other hand, calculating
aggregates in-network may contribute to limit the traffic.

3.5 Forwarding of Events

Primitive events are forwarded from the sources up along the processing trees.
In the case of multiple trees strategy, event notifications are labeled with the
set ST of trees they are relevant for. When a processor p receives a primitive
event e, it reads the set ST ; for each tree T in ST , p extracts the set of rules
(and partial rules) deployed, and uses them to process e. All produced results
(either composite events, in the case of complete rules, or primitive events, in
the case of partial rules) are delivered to the father of p in the tree T .



14 Gianpaolo Cugola, Alessandro Margara

Notice that a single processor p may host multiple partial rules, all regard-
ing the same tree T . In this case, it becomes possible for a primitive event e to
satisfy the patterns of different partial rules at different time instants. To avoid
duplicate transmissions, each processor keeps a history of already forwarded
events for each tree it participates in. The size of this history is dynamically
computed depending from the timing constraints expressed in rules, which in
turn determine the maximum period of time in which events are stored for
processing.

Pull-Based Forwarding. Consider the processing tree T1 shown in Figure 9.
1 is responsible for detecting Fire starting from Temp (T) and Smoke (S), using
Rule R1, defined in Section 2 and reported here for simplicity.

Rule R1

define Fire(area: string, measuredTemp: double)

from Smoke(area=$a) and

each Temp(area=$a and value>45)

within 5 min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

1
2

3 T

S

Fig. 9 Limitations of the Push-Based Forwarding

Smoke events are produced by 2, while Temp event are produced by 3. In
certain cases it may happen to receive a large number of event notifications
about high temperature, while Smoke notifications are much less frequent. In
these cases, since processor 1 can produce Fire only when it receives both
Smoke and Temp, the vast majority of events delivered by processor 3 would
be discarded; forwarding them to 1 only wastes network resources.

Starting from these considerations, we introduced the concept of pull-based
forwarding as opposed to the more common push-based approach we consid-
ered so far. In particular, every partial rule has an associated mode which can
be either push or pull. A push partial rule requires the processor receiving it
to promptly send all matching primitive events to its parent; on the contrary,
a pull partial rule requires the processor to store matching events until the
parent explicitly asks for them. In the example of Figure 9, processor 1 can
decide to send the partial rule for events of type T in pull mode, and to ask
for the delivery of stored events only after receiving events of type S from 2.

More specifically, the protocols used to decide the mode associated to par-
tial rules and to ask for stored events (in case of pull rules) works as follows.
When a processor p receives a rule R, it processes and partitions it as explained
in the previous sections. Among the partial rules generated starting from R,



Deployment Strategies for Distributed Complex Event Processing 15

one is selected as the master, while the others are considered slave. The mode
associated to the master is push, while slave partial rules have a pull mode.
When processor p receives a set of events that satisfy the pattern expressed
in the master, it sends an Awakening message to all children processing slave
rules. Upon receiving this message, a child c, processing the slave partial rule
R′, starts sending events matching R′ to p.

Consider again our example: assume that 1 chooses the partial rule about
Smoke as master for Rule R3. When it receives a Smoke notification, it sends
an Awakening message to 3. Processor 3 has a pull partial rule regarding Temp

notifications: when it detects a high temperature, it stores the corresponding
notification in a buffer, where it remains for the next 5 minutes (the timing
constraints expressed in Rule R3). Upon receives an Awakening message, 3
sends all the event notifications stored (if any) to 1. After receiving these
messages, 1 starts processing. In this case we say that the Awakening opens a
past window of 5 minutes for the slave rule.

The way slave partial rules are processed depends from the position of
the primitive events they have to detect inside the pattern specified in the
original rule. As an example, consider again Figure 9, but now assume that
the partial rule about Temp is elected as a master. Processor 2 does not have
to store any Smoke notification. When it receives an Awakening message from
1 (meaning that a Temp notification has been detected) it starts to forward all
the Smoke events it detects in the following 5 minutes. In this case we say that
the Awakening opens a future window of 5 minutes for the slave rule. In the
most general case, with TESLA rules that define more than one sequence, an
Awakening can open both a past window and a future window.

When there are parameters shared by the master rule and one or more slave
rules, the Awakening message can include the desired values for the shared
attributes to further reduce the network traffic. In the previous example, if the
partial rule about Smoke is selected as master, and a Smoke event is detected
from an area a, this area is stored inside the Awakening message sent to 3, so
that only stored Temp events coming from area a are forwarded.

Adaptive selection of masters. The right choice for the master vs. slave
partial rules may strongly influence the performance of our protocol. To sup-
port this choice, we provide each processor with monitoring capabilities, to
continuously analyze the network traffic. More specifically, a processor p stores,
for each rule R it is responsible for, the number n of events it received in a
given amount of time t from each partial rule R′ originating from R. Period-
ically, p computes the generation rate of each partial rule R′, gr(R′) = n/t,
and uses it to update its decision about the master, by choosing the rule with
the lowest generation rate.

In presence of multiple partial rules deployed, the selection of an appropri-
ate master becomes more complex, since a primitive event e can participate
into more than one partial rules. If at least one of these rules is selected as
master, notifications about e will be received in push mode. In this case, we do
not only consider the generation rate of rules, but also the number of primitive



16 Gianpaolo Cugola, Alessandro Margara

events that are already received in push mode since they are covered by other
master rules.

In summary, the mechanism combining push and pull-based forwarding,
coupled with this adaptive mechanism in the choice of which part of a rule
to manage as push and which to treat as pull, results in the ability for our
protocol to optimize composite event detection to the actual traffic, minimizing
the number of event notifications that need to be forwarded.

4 Evaluation

As mentioned in the Introduction, all the strategies presented above have
been implemented into our T-Rex system [16]. The result is a full fledged
CEP middleware that uses the CDP processing algorithm described in [17]
to interpret TESLA rules and that can be easily deployed in a distributed
network, using either one of the strategies described so far.

To measure the performance of T-Rex in a controlled environment we cre-
ated an emulated network using the Omnet++ simulator [40], on top of which
we run several T-Rex processors, one for each emulated host. This allowed us
to obtain a detailed analysis and comparison of the various strategies, while
easily controlling a number of network parameters. Notice that the fact of
running several T-Rex processors on the same physical machine, under an em-
ulated network, does not influence the times we measured during our tests.
Indeed, Omnet++ is a discrete event simulator for modelling communication
networks. As such, it operates step by step; at each time a single “Omnet++
event”5 is processed, being it one of those used to emulate the network or
one of those that model CEP events flowing around. Consequently, at most
one T-Rex processor may be active at each time, with full access to the re-
sources of the hosting machine, an AMD Phenom II with 6 cores, each running
at 2.8GHz. On the other hand, the use of an emulated network posed some
limits on the complexity of the scenarios we were able to test. Indeed, if the
T-Rex processors do not have to compete for the CPU, they have to share the
same host memory (8Gb). In practice, we were able to emulate networks with
up to 50 processors but we had to reduce the number of rules deployed into
the system, as they strongly impact the memory consumption of each T-Rex
processor.

In our tests we studied five different strategies:

1 ST performs distributed processing on a single tree.
2 MT performs distributed processing on multiple trees.
3 STPP performs distributed processing on a single tree, adopting a hybrid

push-pull communication protocol.
4 MTPP performs distributed processing on multiple trees, adopting a hybrid

push-pull communication protocol.

5 Here the term is used to indicate the internal events used in Omnet++ to model a
complex network, not a T-Rex event.



Deployment Strategies for Distributed Complex Event Processing 17

5 Centr exploits a single processor, which receives primitive events, processes
them, and delivers composite events to interested sinks. It is used as a
baseline.

We refer to the strategies using a single processing tree (including Centr)
as ST strategies, and to the strategies exploiting multiple processing trees as
MT strategies.

Default scenario. To perform our tests, we defined a default scenario, and
then we changed a number of parameters to explore their influence on the
results we measured. Our default scenario includes 20 processors, each one
connected with 5 others, on the average. The topology has been generated us-
ing Brite [29], with an average link delay of 5ms. Sources produce 120 different
types of primitive events. Each type has the same probability of being pro-
duced, and the generation rates vary between 1 notification every 1000 seconds
and 10 notifications per second, with exponential distribution. We deploy 100
TESLA rules, each one including a sequence of 3 events with time windows of
1 min, on the average. Each rule produces a different type of composite events,
and the set of sinks connected with each processor are interested in 10 of them,
on the average. To increase the traffic of events flowing in the network, we de-
cided not to filter primitive events based on their content, but only based on
their type. We will separately investigate how the use of content-based filtering
impact on performance. Despite its simplicity, the default scenario allows us
to capture all the aspects defined in our protocols. We present here the most
interesting results we collected.

For each experiment, before running the actual tests phase, we execute a
configuration phase, in which all the processors run the protocols to build the
processing trees, and all rules and subscriptions are deployed. 30 seconds after
sources begin publishing primitive events, we start monitoring the behavior
of the system and we keep measuring until the most rare event has been
published at least 100 times. With some type of events being published every
1000 seconds, this means that our tests span more than 24 hours of (simulated)
time. We repeated every measure 10 times, using different seeds to generate
the content of events and subscriptions; the 95% confidence interval was always
below 1% of the measured value.

Figure 10 shows the results we measured in the default scenario. In par-
ticular, Figure 10(a) shows the delay for obtaining composite events, while
Figure 10(b) shows the overall traffic generated by the system. The delay is
computed as the difference between the time in which a sink receives a com-
posite event e, and the time in which e occurs (i.e., the time in which the
last primitive event necessary for its detection occurs). Since we are working
in an emulated environment, we can measure this time without incurring in
synchronization errors between processors.

By looking at Figure 10(a), we first observe a significant difference be-
tween ST and MT strategies, with the second class showing lower delays. This
can be easily explained by remembering that MT strategies do not need to de-
liver composite event notifications after processing, thus eliminating the delay



18 Gianpaolo Cugola, Alessandro Margara

 0
 5

 10
 15
 20
 25
 30

Centr ST MT STPP MTPP

Av
er

ag
e 

de
la

y 
(m

s)

(a) Average Delay (ms)

 0
 2
 4
 6
 8

 10
 12

Centr ST MT STPP MTPP

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

(b) Average Traffic (KB/s)

Fig. 10 Default Scenario

introduced in this phase. If we compare ST strategies, we observe that Centr

and ST behave almost identically, while STPP exhibits a slightly higher delay.
This was expected, since pull notifications are not delivered immediately, but
only when explicitly asked. The same is true for MT strategies.

By looking at Figure 10(b), we immediately observe that the Centr strategy
generates significantly more traffic than the others. This means that, in our
default scenario, the in-network filtering mechanisms introduced by distributed
processing of events allows processors located near to sources to discard a large
number of primitive events. Since our default scenario does not include con-
tent-based filtering of primitive events, the results shown in Figure 10(b) derive
uniquely from the time-based filtering of events that do not contribute to valid
sequences in the specified time windows. In the following, we will analyze how
results change both when content-based filtering is added and when the size
of windows is modified.

If we compare the four strategies that perform a distributed processing of
events, we observe that MT strategies generate more traffic. On the one hand,
these strategies need to forward primitive events along multiple trees; on the
other hand, they do not need to forward composite events after detection.
The results shown in Figure 10(b) demonstrate that in our default scenario
the cost of duplicating primitive events over multiple trees overcomes the cost
of forwarding composite events. Finally, we measure a marginal benefit in
introducing pull notifications.

Number of rules. Figure 11 shows how results change when we increase
the number of deployed TESLA rules. The delay perceived by sinks (Fig-
ure 11(a)) does not change significantly, despite increasing the number of rules
also increases the complexity of processing. This is in line with our analysis
of our processing algorithm [17]: processing times are in the order of tens
of microseconds and are therefore dominated by communication delays. Fig-
ure 11(b) shows how the overall network traffic increases with the number of
deployed rules. As rules increase in number, they attract more and more primi-
tive events, forcing processors to forward them inside the overlay network. The
traffic grows slightly faster in MT strategies than in ST ones.

Number of subscriptions. Figure 12 shows how results change with the
number of subscriptions issued by sinks. The number of subscriptions deter-



Deployment Strategies for Distributed Complex Event Processing 19

 0

 10

 20

 30

 40

 50

 60

 70

 20  40  60  80  100  120  140  160  180  200

Av
er

ag
e 

de
la

y 
(m

s)

Number of Rules

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 5

 10

 15

 20

 25

 30

 35

 20  40  60  80  100  120  140  160  180  200

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Rules

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 11 Number of Rules Deployed

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  5  10  15  20  25  30

Av
er

ag
e 

de
la

y 
(m

s)

Number of Subscriptions per Processor

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Subscriptions per Processor

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 12 Number of Subscription per Processor

mines where composite events have to be forwarded after detection. Moreover,
in the case of MT strategies, the number of sinks subscribing to a composite
event e determines the number of processing trees used to detect e.

By looking at Figure 12(a), we observe that the delay measured is not in-
fluenced by the number of subscriptions. This means that a larger number of
interested sinks for each produced event (and an increased number of process-
ing trees, for MT strategies) does not significantly impact on the delay, which is
dominated by the latency of network links, as already observed in the previous
section.

As expected, the network traffic increases with the number of subscrip-
tions (Figure 12(b)). It is interesting to note how MT strategies perform better
than ST ones when the number of subscriptions is low (below 5 subscriptions
per processor). Indeed, the main advantage of MT strategies is that they do not
need to forward composite event notifications; at the same time they introduce
an additional cost for moving primitive events over different trees. When the
number of subscriptions is low, so is the number of processing trees adopted
and the advantages of MT strategies come at a small cost. On the other hand,
when the number of subscriptions increases, so does the number of process-



20 Gianpaolo Cugola, Alessandro Margara

ing trees. Accordingly, with more than 5 subscriptions per processor, the ST

strategies become more convenient in terms of network traffic.
Finally, having a large number of subscriptions negatively influences the

MTPP strategy. With a large number of different processing trees, the pull mech-
anism does not produce benefits: in the communication between two proces-
sors, primitive events asked in pull mode for a tree may indeed be necessarily
forwarded in push mode for another tree, thus preventing traffic optimizations.

Selection policy. In our default scenario all sequences were defined using
a single selection policy, and more precisely using the last-within opera-
tor. We now investigate how results change when introducing a percentage of
each-within operators (up to 30%) inside rules.

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30

Av
er

ag
e 

de
la

y 
(m

s)

Percentage of each-within Operators

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30

Ne
tw

or
k 

tra
ffi

c 
(K

B/
s)

Percentage of each-within Operators

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 13 Selection Policy

As in the previous experiments, the average delay registered by the sinks
remains constant (Figure 13(a)). Once again, the differences in processing
times are dominated by the latencies of network links. When considering the
network traffic (Figure 13(b)), the adopted selection policy contributes in two
ways: on the one hand, our recursive partitioning of rules becomes less efficient
when it cannot exploit single selection constraints to filter primitive events;
on the other hand, a multiple selection policy produces a larger number of
composite events, which need to be forwarded to interested sinks.

By looking at Figure 13(b), we can conclude that the first aspect has only
a marginal impact. This can be deduced by observing the traffic generated by
MT strategies, which do not need to forward composite events after detection.
Moving from 0 to 30% of each-within operators only produces a limited in-
crease in network traffic. On the other hand, ST strategies significantly increase
the network traffic when a multiple selection policy is adopted. As expected,
MT strategies become more convenient as the ratio between composite events
and primitive events increases, i.e., when a multiple selection policy is adopted.

Size of windows. Figure 14 shows how performance changes with the size
of the time windows used inside rules. As in previous sections, the average
delay observed by sinks (Figure 14(a)) does not change significantly. On the



Deployment Strategies for Distributed Complex Event Processing 21

other hand, the size of windows has a visible impact on the network traffic.
As expected, all strategies exhibit higher traffic with larger windows; indeed,
increasing the size of windows also increases the number of primitive events
participating in valid patterns, and hence the number of composite events gen-
erated. Although it is not evident from the graph, the differences in terms of
traffic between distributed ST strategies and the Centr strategy decrease. In-
deed, larger windows reduce the possibility to filter out primitive events before
they reach the root of the processing tree. On the contrary, when comparing
MT strategies against Centr, we measure larger differences with larger time
windows. Indeed, increasing the size of windows also increases the number
of composite events generated, which advantages MT strategies. Finally, the
use of pull notifications is more efficient with small windows, which increase
the number of stored events that can be deleted because they violate timing
constraints.

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160

Av
er

ag
e 

de
la

y 
(m

s)

Windows Size

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100  120  140  160

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Windows Size

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 14 Size of Windows

Content-based filtering. In this section we investigate how results change
when the value of event attributes is used to filter out primitive events. When
considering distributed processing of rules (as in the ST and MT strategies), this
operation can be performed by processors close to sources, thus reducing the
number of events that flow the network. We consider this analysis extremely
important, since we expect real applications to make wide use of content-based
selection selection of primitive events.

In the tests presented in Figure 15, each rule only selects primitive events
that present a specific value for a given attribute. We changed the number
of values that each attribute can assume, moving it from 1 to 10. A value
of 1 means that all events are accepted for creating valid sequences (as in
previous sections), while a value of 10 means that only 10% of primitive events
is valid, and 90% of events can be immediately discarded. As expected, the
average delay is not influenced by the presence of filtering (Figure 15(a)).
On the other hand, increasing the number of attribute values reduces the
network traffic (Figure 15(b)). As more primitive events are filtered, fewer



22 Gianpaolo Cugola, Alessandro Margara

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7  8  9  10

Av
er

ag
e 

de
la

y 
(m

s)

Number of Attribute Values

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Attribute Values

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 15 Filtering of Primitive Events

composite events are generated. While this advantages all strategies, including
Centr, distributed strategies obtain an additional benefit, as they can discard
primitive events close to sources.

Number of processors. Figure 16 shows how performance changes with the
number of processors in the overlay network, moving from 5 to 50. While in-
creasing the number of processors, we also increase the number of connections,
thus trying to limit the differences between topologies in terms of number of
hops needed to forward a packet from one processor to another one. As for
the default scenario, all network topologies have been generated using Brite.
When increasing the scale of the network, we also increased the number of
primitive event types, and the number of deployed rules. We believe this bet-
ter represents realistic scenarios, in which the heterogeneity of events observed
and generated grows with the scale of the network.

 0

 10

 20

 30

 40

 50

 60

 5  10  15  20  25  30  35  40  45  50

Av
er

ag
e 

de
la

y 
(m

s)

Number of Processors

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30  35  40  45  50

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Processors

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 16 Number of Processors

Despite we tried to limit the differences between topologies in terms of
number of hops, the delay measured by sinks presents visible oscillations (Fig-
ure 16(a)). This behavior is more evident for ST strategies, which strongly rely



Deployment Strategies for Distributed Complex Event Processing 23

on the available overlay links when building the unique tree used to forward
events.

Figure 16(b) shows how the network traffic increases with the number
of processors. As we mentioned, indeed, we increased the number of primitive
events and deployed rules together with the number of processors. MT strategies
exhibit an interesting behavior: since they need to forward primitive events
over different paths, the traffic they generate increases with the number of
possible trees. This result suggests that MT strategies may not be convenient
for large scale networks. However, it is worth mentioning that in our scenario
we do not consider locality of events: primitive events may be generated at
different (and distant) processors, and they can participate in several different
rules. We expect real applications to present two forms of locality. (i) Locality
of primitive events in rules, meaning that rules can be divided into classes,
and primitive events participate only in a limited number of classes. As an
example, events of type Temperature could participate in rules related to
environmental monitoring, but they will not probably appear in rules related
to inventory management. (ii) Locality of publishers: events that participate
in the same rule are often produced by nearby sources. For example all events
related to inventory management are produced in a single building.

 0

 10

 20

 30

 40

 50

 60

 5  10  15  20  25  30  35  40  45  50

Av
er

ag
e 

de
la

y 
(m

s)

Number of Processors

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30  35  40  45  50

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Processors

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 17 Number of Processors (with Locality)

To better understand the benefits of locality, we defined and tested a new
scenario, in which we significantly increased the locality of primitive events (we
defined classes of 10 rules, all using the same primitive events), and the locality
of publishers. The results measured in this scenario are shown in Figure 17.
Since we did not impose locality for sinks, the measured delay does not change
significantly with respect to the previous scenario (see Figure 17(a)). On the
other hand, Figure 17(b) shows a remarkable difference in the network traffic.
While ST strategies are still more efficient, MT strategies now show similar
results, with an average network traffic that is significantly lower than in the
Centr strategy. To conclude, we can say that, while MT strategies suffer from
the need of delivering primitive events over different paths, the presence of
locality significantly mitigates the problem.



24 Gianpaolo Cugola, Alessandro Margara

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5  10  15  20  25  30  35  40  45  50

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Number of Processors

Centr
ST
MT

STPPMTPP

Fig. 18 Number of Processors (with Filtering)

Finally, we repeated our scalability tests introducing content-based filtering
of primitive events. Figure 18 shows the network traffic measured when 90%
of primitive events is filtered out based on the value of attributes. As in the
case of locality, distributed processing becomes more efficient than centralized
processing, with a significantly reduced network traffic. Moreover, the reduced
number of primitive events flowing the network increases the advantages of
pull notifications, especially with a large number of processors.

Publication rate. Figure 19 shows how performance changes with the pub-
lication rate. In particular, during our tests, we fixed a maximum publication
rate of 10 events per second, while we changed the minimum publication rate,
moving it from 1 event every 5 seconds to 1 event every 10000 seconds. Since
we adopt an exponential distribution, this operation has only a minimal im-
pact on the average publication rate. On the other hand, it has a great impact
on the number of composite events generated, since certain event types be-
come extremely rare. As expected, the average delay is not influenced by the
publication rate (Figure 19(a)). When increasing the maximum time between
publications, all strategies present a lower traffic (Figure 19(b)), since fewer
composite events are generated. While this advantages ST strategies that need
to forward composite events after detection, it produces a greater advantage in
strategies performing distributed processing, which filter events near sources.
Accordingly, the advantage of both ST and STPP over Centr increases with the
maximum time between publications.

On the contrary, MT strategies are not influenced by the number of gen-
erated composite events, but only by the possibility of filtering out primitive
events. As a result, the advantage of MT strategies over Centr in terms of gen-
erated traffic does not change significantly with the maximum time between
publications. Finally, we observe how a small difference between publication
rates makes it inconvenient to adopt mechanisms for pull notifications. Indeed,
the number of primitive events forwarded in pull mode becomes small, and the
cost of the mechanism overcomes the advantages.

A scenario for pull notifications. Our analysis so far did not show signif-
icant benefits from the use of a hybrid push-pull approach. In particular, the
use of pull notifications introduces some additional delay for the delivery, while



Deployment Strategies for Distributed Complex Event Processing 25

 0

 10

 20

 30

 40

 50

 60

 70

 10  100  1000  10000

Av
er

ag
e 

de
la

y 
(m

s)

Max Time Between Publications

Centr
ST
MT

STPPMTPP

(a) Average Delay (ms)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 10  100  1000  10000

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Max Time Between Publications

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 19 Publication Rate

 0

 10

 20

 30

 40

 50

 60

 70

 2  2.5  3  3.5  4  4.5  5  5.5  6

Av
er

ag
e 

de
la

y 
(m

s)

Sequence Length

Centr
ST
MT

STPP
MTPP

(a) Average Delay (ms)

 0

 50

 100

 150

 200

 2  2.5  3  3.5  4  4.5  5  5.5  6

N
et

w
or

k 
tra

ffi
c 

(K
B/

s)

Sequence Length

Centr
ST
MT

STPPMTPP

(b) Average Traffic (KB/s)

Fig. 20 A scenario for pull notifications

providing a minimum advantage (if any) in terms of network traffic. We claim
that this is mostly a result of using synthetic scenarios, where a lot of aspects
are randomly chosen using a uniform distribution. We know there are scenar-
ios where the push-pull approach must offer some advantages and we present
one in this section. It differs from our default scenario in three main aspects:
(i) each primitive event participates in a very small number of rules, such that
if an event is processed in pull mode in a rule it is not processed in push mode
in another; (ii.) it considers a (relatively) large network, with 50 processors,
to increase the benefit of storing events instead of pushing them immediately
toward a distant root; (iii.) it considers (relatively) small windows of 1s, to
increase selectivity of rules.

Notice that, albeit built ad-hoc, this scenario is not uncommon in CEP
applications as it reflects a medium to large scale situation in which, even
when many rules are deployed, they process different types of primitive events.
This may happen either because each rule considers a different aspect of the
same system, or because the CEP infrastructure offers its services to multiple
applications, each with its own rules and event types.

Figure 20 shows the results we measured in this scenario, while changing the
length of sequences, i.e., the number of primitive event types captured by each
rule. First, also in this case, the delay remains almost constant (Figure 20(a)),



26 Gianpaolo Cugola, Alessandro Margara

with the exception of push-pull strategies, whose delay slightly increases with
the length of sequences. Indeed, longer sequences increase the number of pull-
based partial rules, which provide results only when asked, thus introducing
delay. By looking at Figure 20(b) we first observe an advantage of distributed
strategies with respect to Centr that increases with the length of sequences.
Indeed, long sequences favor distributed filtering of primitive events, introduc-
ing a larger number of timing constraints between them. Most importantly, in
this scenario we observe a reduction of about 15-20% of network traffic when
introducing pull notifications, both in ST and in MT strategies. Moreover, the
advantage remains almost constant with the length of sequences.

Final considerations. As we already observed in our previous experience [16,
17], when dealing with a CEP system the number of parameters that impact on
performance is huge. It is even larger when distributed processing is taken into
account: it becomes fundamental to consider the topology of the network, and
the capabilities of links, but also where information is produced and consumed,
as our experiments on locality demonstrates. To further extend our analysis
of strategies, we plan to try real deployments.

However, the results we measured allow us to derive some interesting con-
clusions. First, distributed solutions provide significant benefits with respect
to a centralized deployment in terms of network traffic, by filtering events
close to sources. Moreover, MT solutions also reduce the forwarding delay, often
considered the most significant metrics for event-based applications. Indeed,
processing times contribute only marginally to the delay for delivering notifi-
cations, making MT strategies advantageous even if they duplicate processing
over multiple trees.

A further consideration regards the strategies that include pull notifica-
tions. In most of the tests we performed they provide only limited benefits.
However, as shown in Figure 20, there are scenarios in which the use of pull
notifications can contribute in reducing the overall network traffic. This is a
key metric in many application fields, where network bandwidth is a scarce
resource (e.g., monitoring with wireless sensor network).

Finally, as a future work, we plan to test how the different strategies react
to dynamic behaviors of sources and sinks. Indeed, we are also interested in
understanding the benefits and the limitation of each strategy when applied
to environments where clients come and go frequently and unpredictably. In
such scenarios, it becomes relevant to study the overhead introduced for re-
computing the processing trees and re-deploying the rules when the topology
of the network changes.

5 Related Work

One of the aspects addressed by the deployment strategy of a CEP system is
the operator placement problem, which specifies how the operators defined in
rules are deployed on available processors. A good survey of existing solutions
can be found in [26].



Deployment Strategies for Distributed Complex Event Processing 27

A fundamental consideration about the operator placement problem re-
gards the kind of operators it addresses. By using the terminology introduced
in [18], we notice that most existing operator placement algorithms are based
on transforming languages. These languages define a sequence of transforma-
tions that incoming data has to pass through to produce the desired output:
since these transformations are applied one after the other, it is easy to de-
ploy them on different processors. On the contrary, detecting languages specify
complex patterns, often involving timing constraints, which are not trivial to
split.

Distributed detection of pattern has been first explored in [27], with a
very simple language. An important contribution comes from [37], where the
authors study how patterns can be rewritten for efficient distribution.

Existing solutions for the operator placement problem [7,4,27,1,25,32,44,
6,36,42,24,14] differ from each other on many aspects. (i) They start from dif-
ferent assumptions: some of them consider large scale networks of processors,
while others assume clusters of colocated machines; some consider processors
with heterogeneous computational resources, while others consider homoge-
neous processors; some of them assumes that single operators can be dupli-
cated at different processors, if needed, while others do not allow duplications.
(ii) They are designed for different goals: for example, minimize the delay re-
quired to produce results other, minimize the usage of network resources, or
a combination of the two, or again minimize processing resource usage, and
hence power consumption.

Since the problem is known to be NP hard, it is usually solved using ap-
proximated algorithm or heuristics. Most systems rely on a centralized decider,
which collects all relevant information about the network status and locally
computes a solution for the problem. Only a few proposals have considered
a decentralized algorithm for operator placement. The deployment strategies
proposed in this paper solve the operator placement problem in a distributed
way, by recursively splitting rules at each processor; moreover, our push-pull
approach exploits traffic information to alter the communication between pro-
cessors.

Beside addressing the placement of operators, a complete deployment strat-
egy also needs to precisely define the protocols that govern the interaction
among processors, specifying how information is collected, processed, and fi-
nally delivered to interested sinks. These issues are often not considered in
existing CEP systems: most of them are based on a centralized deployment, in
which all the processing is performed on a single machine (e.g. [8,2]). Others
define distributed processing, but are based on extremely simple languages if
compared with TESLA, which do not capture all the needs of event-based ap-
plications [27]. Even when distributed processing is allowed, deployment often
requires manual configuration [5].

It is worth mentioning that some remarkable example of automated distri-
bution can be found among DSMSs [1,3].

Another interesting contribution is presented in [34,33], where the authors
introduce a framework for complex event detection that works on top of exist-



28 Gianpaolo Cugola, Alessandro Margara

ing publish-subscribe systems. While the work does not explicitly focus on the
problem of operator placement, it enables distributed processing by translat-
ing all the processing rules into automata structures, whose constituent states
can migrate for node to node, depending from the requirements of the system.

Finally, some of the protocols adopted in our strategies are inspired by
work on distributed publish-subscribe systems and content-based routing [12].

Ortogonal to our strategies are the techniques used to ensure reliability in
event-based systems [31] and to generate meaningful event notifications from
the low level information collected by sources [43]. The latter problem is often
addressed by modeling the uncertainty associated to collected information [41,
35]; in particular, when dealing with large scale distributed systems, it becomes
of primary importance to consider the uncertainty associated with time and
location of event occurrence [28,38,30]. We are currently working to integrate
the strategies presented in this paper with our own model of uncertainty.

6 Conclusions

In this paper we introduced and compared different deployment strategies
for distributed CEP. Given a network of processors, they precisely define the
communication required to handle rule and subscription deployment, and to
collect, process, and deliver event notifications. In these solutions, deployment
is performed in a distributed way, with each processor autonomously taking
decisions based on local knowledge about their neighbors. We analyze the
different strategies and compare them against a centralized deployment.

Different aspects emerge from our analysis: first, processing delays are neg-
ligible if compared with typical network latencies. As a consequence, the most
efficient strategies in terms of delay are those that choose the shortest paths to
deliver events to sinks, even if this brings to duplication of processing. Second,
distributed processing significantly reduces the network traffic with respect to
a centralized solution, by filtering events close to their sources. Finally, we
evaluated monitoring mechanisms that allow the middleware to automatically
adapt to event generation rates, by applying a hybrid push-pull approach to de-
liver event notifications. Despite this solution provides only limited advantages
in terms of network traffic, they can provide benefits in scenarios, like wireless
sensor networks, in which network resources are significantly constrained.

Acknowledgment

This work was partially supported by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H.,
Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.:



Deployment Strategies for Distributed Complex Event Processing 29

The design of the borealis stream processing engine. In: CIDR ’05. ACM, Asilomar,
CA, USA (2005)

2. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over
event streams. In: SIGMOD ’08, pp. 147–160. ACM, New York, NY, USA (2008).
DOI http://doi.acm.org/10.1145/1376616.1376634

3. Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M., Hwang, J.H., Jhingran,
A., Maskey, A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing,
Y., Zdonik, S.: Distributed operation in the borealis stream processing engine.
In: SIGMOD ’05, pp. 882–884. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1066157.1066274

4. Ahmad, Y., Çetintemel, U.: Network-aware query processing for stream-based applica-
tions. In: VLDB ’04, pp. 456–467. VLDB Endowment (2004)

5. Ali, M.: An introduction to microsoft sql server streaminsight. In: Proceedings of the
1st International Conference and Exhibition on Computing for Geospatial Research and
Application, COM.Geo ’10, pp. 66:1–66:1. ACM, New York, NY, USA (2010). DOI
http://doi.acm.org/10.1145/1823854.1823929

6. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of extreme-
scale stream processing systems. In: ICDCS ’06, p. 71. IEEE Computer Society, Wash-
ington, DC, USA (2006). DOI http://dx.doi.org/10.1109/ICDCS.2006.13

7. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load management in
federated distributed systems. In: NSDI ’04, pp. 15–15. USENIX Association, Berkeley,
CA, USA (2004)

8. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald,
M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine.
In: SIGMOD ’07, pp. 1100–1102. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1247480.1247620

9. Broda, K., Clark, K., 0002, R.M., Russo, A.: Sage: A logical agent-based environment
monitoring and control system. In: AmI ’09, pp. 112–117 (2009)

10. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and evaluation of a wide-area event
notification service. ACM Trans. on Comp. Syst. 19(3), 332–383 (2001). URL cite-
seer.nj.nec.com/482106.html

11. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressiveness
in an internet-scale event notification service. In: PODC ’00, pp. 219–227. Portland,
Oregon (2000)

12. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based net-
working. In: INFOCOM ’04. Hong Kong, China (2004)

13. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for active
databases: Semantics, contexts and detection. In: Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pp. 606–617. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1994)

14. Cugola, G., Margara, A.: Raced: an adaptive middleware for complex event detection.
In: ARM ’09, pp. 1–6. ACM, New York, NY, USA (2009)

15. Cugola, G., Margara, A.: Tesla: a formally defined event specification lan-
guage. In: DEBS ’10, pp. 50–61. ACM, New York, NY, USA (2010). DOI
http://doi.acm.org/10.1145/1827418.1827427

16. Cugola, G., Margara, A.: Complex event processing with t-rex. Journal of Sys-
tems and Software 85(8), 1709 – 1728 (2012). DOI 10.1016/j.jss.2012.03.056. URL
http://www.sciencedirect.com/science/article/pii/S0164121212000842

17. Cugola, G., Margara, A.: Low latency complex event processing on parallel hard-
ware. Journal of Parallel and Distributed Computing 72(2), 205 – 218 (2012). DOI
10.1016/j.jpdc.2011.11.002

18. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). DOI
10.1145/2187671.2187677. URL http://doi.acm.org/10.1145/2187671.2187677

19. Cugola, G., Margara, A., Migliavacca, M.: Context-Aware Publish-Subscribe: Model,
Implementation, and Evaluation. In: ISCC ’09. IEEE Computer Society Press (2009)

20. Demers, A.J., Gehrke, J., Hong, M., Riedewald, M., White, W.M.: Towards expressive
publish/subscribe systems. In: EDBT ’06, pp. 627–644 (2006)



30 Gianpaolo Cugola, Alessandro Margara

21. Eyers, D., Freudenreich, T., Margara, A., Frischbier, S., Pietzuch, P., Eugster, P.: Living
in the present: on-the-fly information processing in scalable web architectures. In: Pro-
ceedings of the 2nd International Workshop on Cloud Computing Platforms, CloudCP
’12, pp. 6:1–6:6. ACM, New York, NY, USA (2012). DOI 10.1145/2168697.2168703.
URL http://doi.acm.org/10.1145/2168697.2168703

22. Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: STAR: Self-
tuning aggregation for scalable monitoring. In: VLDB’07 (2007)

23. Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network im-
precision: a new consistency metric for scalable monitoring. In: OSDI’08 (2008). URL
http://dl.acm.org/citation.cfm?id=1855741.1855748

24. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.L., Andrade, H.,
Gedik, B.: Cola: optimizing stream processing applications via graph partitioning. In:
Middleware ’09, pp. 1–20. Springer-Verlag New York, Inc., New York, NY, USA (2009)

25. Kumar, V., Cooper, B.F., Cai, Z., Eisenhauer, G., Schwan, K.: Resource-
aware distributed stream management using dynamic overlays. In: ICDCS ’05,
pp. 783–792. IEEE Computer Society, Washington, DC, USA (2005). DOI
http://dx.doi.org/10.1109/ICDCS.2005.69

26. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale
data stream systems. IEEE Internet Computing 12(6), 50–60 (2008). DOI
http://dx.doi.org/10.1109/MIC.2008.129

27. Li, G., Jacobsen, H.A.: Composite subscriptions in content-based publish/subscribe
systems. In: Middleware ’05. Springer-Verlag New York, Inc. (2005)

28. Liebig, C., Cilia, M., Buchmann, A.: Event composition in time-dependent distributed
systems. In: Cooperative Information Systems, 1999. CoopIS ’99. Proceedings. 1999 IF-
CIS International Conference on, pp. 70 –78 (1999). DOI 10.1109/COOPIS.1999.792159

29. Medina, A., Lakhina, A., Matta, I., Byers, J.: Brite: An approach to universal topology
generation. In: MASCOTS ’01, pp. 346–. IEEE Computer Society, Washington, DC,
USA (2001)

30. Moody, K., Bacon, J., Evans, D., Schwiderski-Grosche, S.: Implementing a practical
spatio-temporal composite event language. In: K. Sachs, I. Petrov, P. Guerrero (eds.)
From Active Data Management to Event-Based Systems and More, Lecture Notes in
Computer Science, vol. 6462, pp. 108–123. Springer Berlin / Heidelberg (2010). URL
http://dx.doi.org/10.1007/978-3-642-17226-7 7. 10.1007/978-3-642-17226-7 7

31. O’Keeffe, D., Bacon, J.: Reliable complex event detection for pervasive computing.
In: Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, DEBS ’10, pp. 73–84. ACM, New York, NY, USA (2010). DOI
10.1145/1827418.1827429. URL http://doi.acm.org/10.1145/1827418.1827429

32. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: ICDE ’06. IEEE
Computer Society (2006)

33. Pietzuch, P., Shand, B., Bacon, J.: Composite event detection as a generic middleware
extension. Network, IEEE 18(1), 44 – 55 (2004). DOI 10.1109/MNET.2004.1265833

34. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in distributed
systems. In: Proceedings of the ACM/IFIP/USENIX 2003 International Conference
on Middleware, Middleware ’03, pp. 62–82. Springer-Verlag New York, Inc., New York,
NY, USA (2003). URL http://dl.acm.org/citation.cfm?id=1515915.1515921

35. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilis-
tic streams. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08, pp. 715–728. ACM, New York, NY, USA (2008).
DOI 10.1145/1376616.1376688

36. Repantis, T., Gu, X., Kalogeraki, V.: Synergy: sharing-aware component composition
for distributed stream processing systems. In: Middleware ’06, pp. 322–341. Springer-
Verlag New York, Inc., New York, NY, USA (2006)

37. Schultz-Moeller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event process-
ing with query optimisation. In: DEBS ’09. ACM, ACM, Nashville, TN, USA (2009)

38. Schwiderski-Grosche, S., Moody, K.: The spatec composite event language for spatio-
temporal reasoning in mobile systems. In: Proceedings of the Third ACM In-
ternational Conference on Distributed Event-Based Systems, DEBS ’09, pp. 11:1–



Deployment Strategies for Distributed Complex Event Processing 31

11:12. ACM, New York, NY, USA (2009). DOI 10.1145/1619258.1619273. URL
http://doi.acm.org/10.1145/1619258.1619273

39. Srivastava, U., Widom, J.: Flexible time management in data stream systems.
In: PODS ’04, pp. 263–274. ACM, New York, NY, USA (2004). DOI
http://doi.acm.org/10.1145/1055558.1055596

40. Varga, A.: The omnet++ discrete event simulation system. ESM ’01 (2001)
41. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Efficient processing of uncertain events

in rule-based systems. IEEE Trans. on Knowl. and Data Eng. 24(1), 45–58 (2012). DOI
10.1109/TKDE.2010.204

42. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L., Fleischer,
L.: Soda: an optimizing scheduler for large-scale stream-based distributed computer
systems. In: Middleware ’08, pp. 306–325. Springer-Verlag New York, Inc., New York,
NY, USA (2008)

43. Yoneki, E., Bacon, J.: Unified semantics for event correlation over time and space
in hybrid network environments. In: Proceedings of the 2005 Confederated interna-
tional conference on the Move to Meaningful Internet Systems, OTM’05, pp. 366–
384. Springer-Verlag, Berlin, Heidelberg (2005). DOI 10.1007/11575771 24. URL
http://dx.doi.org/10.1007/11575771 24

44. Zhou, Y., Ooi, B.C., Tan, K.L., Wu, J.: Efficient dynamic operator placement in a locally
distributed continuous query system. In: OTM Conferences (1), pp. 54–71 (2006)


