
Break the Windows: Explicit State Management
for Stream Processing Systems

Alessandro Margara
DEIB, Politecnico di Milano

alessandro.margara@polimi.it

Daniele Dell’Aglio
IFI, University of Zurich
dellaglio@ifi.uzh.ch

Abraham Bernstein
IFI, University of Zurich
bernstein@ifi.uzh.ch

ABSTRACT
Several stream processing and reasoning systems have
emerged in the last decade, motivated by the need to pro-
cess large volumes of data on the fly, as they are generated,
to timely extract relevant knowledge. Despite their differ-
ences, all these systems isolate the data that is relevant for
processing using (fixed size) windows that typically capture
the most recent data and assume its validity.

We claim that this paradigm is not flexible enough to ef-
fectively model several application domains and we propose
a novel abstraction that enables for explicit state represen-
tation and management. We model state as a collection of
data elements annotated with their time of validity and we
augment the traditional stream processing paradigm with
state-handling abstractions to declare how the input streams
affect the state of the system and how the state influences
the results of the processing.

Keywords
Stream Processing; Stream Reasoning; Event Processing;
Windows; State Management; Explicit State

1. INTRODUCTION
Several application domains require analyzing streams of

data on-the-fly, as new data become available, to extract
valuable knowledge. Examples include environmental moni-
toring, click stream analysis in Web sites, traffic monitoring,
credit card fraud detection, computer systems monitoring,
interaction analysis in social media, and smart cities.

In the last decade, this need led to a bloom of technologies
for stream processing and reasoning [6, 12], which introduce
(i) languages and programming abstractions to define how
to extract relevant knowledge from the input data; (ii) algo-
rithms and techniques to efficiently perform such task.

Stream processing and reasoning systems were developed
by researchers and practitioners active in diverse fields, such
as database systems [3], event-based systems [11], knowl-
edge representation [5], and Big Data processing [13]. As a

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

consequence, they present heterogeneous design choices and
characteristics.

Despite their differences, all these technologies build on
the implicit assumption that the most recent data is also
the most relevant for processing, and isolate recent data us-
ing window operators, for instance to limit the scope of the
analysis to the last ten elements of the stream or to the
elements that occurred within the last five minutes. Fur-
thermore, they often assume that all the information stored
in windows is valid when the processing takes place.

We believe that this paradigm is not flexible enough to
effectively model several application domains, since: (i) win-
dows with a predefined and fixed size might not be suitable
to define the portion of streaming data that is relevant for
processing, which might depend on the specific content of
the data; (ii) windows might include invalid or contradic-
tory information.

To motivate our claims, let us refer to some concrete use
cases. Consider a click-stream monitoring system that an-
alyzes the interactions of potential customers with an e-
commerce Web site. The system should trace a user from the
moment when she enters the Web site to the moment when
she leaves the Web site. A shorter observation time frame
would be meaningless for the application logic, whereas a
larger time frame could waste computational resources. This
simple example highlights that fixed-size windows are not al-
ways adequate to isolate relevant stream elements.

Consider now a security service to monitor the position
of visitors in a building, in which sensors signal a new event
every time a visitor enters a room. If we assume a fixed time-
window of five minutes, it is possible that a visitor moves
through multiple rooms within the scope of a single window.
Considering all the events generated within this fixed time
frame as valid would lead to the erroneous conclusion that
the visitor is simultaneously in multiple rooms. This exam-
ple shows that one might infer contradictory information if
she simply considers as valid all the data elements within a
window, without properly considering their mutual relations
—in our example, the most recent position invalidates and
updates any previous position of the same visitor—.

We believe that the above limitations could be overcome
with flexible abstractions to model state in stream process-
ing systems. For instance, the e-commerce scenario could
benefit from the presence of state information that records
which users are active at a given point in time. Similarly,
the security service could model the position of each visitor
as part of the state and update such a state whenever the
visitors move.

Poster Paper

 

 

Series ISSN: 2367-2005 482 10.5441/002/edbt.2017.50

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.50


Moving from these premises, we propose an extension to
stream processing and reasoning that makes state explicit
and captures it as a first class object. We model state as a
collection of data elements annotated with their time of va-
lidity. Then, we augment the traditional stream processing
model that defines transformations from input streams to
output streams with state-handling abstractions to (i) de-
clare how state information influences the results of the pro-
cessing —for instance, we want to monitor only active users
in the e-commerce scenario, where the set of active users is
defined as part of the state—; (ii) declare how the stream of
input data updates the state —for instance, a new event in
the security service invalidates previous information about
the position of a visitor and adds a new state element with
the current position of that visitor—.

We see several benefits from explicit state management in
stream processing systems. As motivated by the scenarios
above, the possibility to define and reference state informa-
tion has the potential to ease the modeling of the application
at hand. Furthermore, it might simplify the processing task
by activating some derivations only when specific conditions
on the state are met. Finally, the presence of an explicit
repository for state information would make the state avail-
able for query and retrieval.

The paper is organized as follows. Section 2 presents the
state-of-the-art systems for stream processing and reasoning,
with emphasis on their approaches to manage state informa-
tion. Section 3 presents the model we propose to explicitly
manage state. Section 4 surveys work that is related to the
topic of this paper, and Section 5 concludes the paper and
draws a road map for future work.

2. BACKGROUND
This section surveys the main models and technologies

for stream processing and reasoning, focusing on their state
management capabilities.

Perhaps the first processing model for streaming data is
CQL —Continuous Query Language— that builds on the
relational model [3]. CQL introduces window operators to
isolate finite blocks of the input streams and then applies
relational processing on such blocks. Windows typically in-
clude the latest elements received from the input streams:
as new data is received, the content of the windows changes,
and the processing is re-executed to update the results ac-
cordingly. The most widely adopted windows have a fixed
size in terms of number of elements —count windows— or
time span —time windows—. This model is the core of vir-
tually all Data Stream Processing Systems (DSMSs) [4].

The relational core of this model facilitates the inter-
operability of streaming data and static relational tables.
Although static tables could be theoretically employed to
store state information, the model does not include state-
management functionalities.

Complex Event Processing (CEP) systems consider each
stream element as the notification of occurrence of an event
at some points in time, and offer abstractions to define sit-
uations of interest as (temporal) patterns of events [6, 11].
Patterns are typically searched for within time windows or
include temporal constraints conceptually similar to time
windows.

Some CEP systems adopt interval time semantics, mean-
ing that the situations detected from the raw events can have
an associated time interval of validity [2]. Situations con en-

State

Input Streams Output Streams

State management
State management rules

Stream processing

Stream processing rules

Queries

Reasoning

Ontologies

Figure 1: Model of stream processing with explicit state
management

code the current state of the application environment and be
composed with further events during processing. Neverthe-
less, these systems do not offer specific abstractions to model
and update state information. Furthermore, situations are
not persisted and cannot be queried.

Stream reasoning extends the above approaches by ex-
ploiting the RDF data model to represent data elements
within the streams, which enables for complex forms of logic
inference —reasoning— [12], often trading off performance
for expressivity. Despite the use of a different data model
and more expressive processing, stream reasoning systems
inherit the windowing mechanisms of DSMSs and CEP sys-
tems. Furthermore, since they typically exploit all the infor-
mation in the current window to perform logical inference,
they might suffer from the presence of inconsistent data, as
discussed in the use cases in Section 1.

Big Data processing systems were originally designed to
batch process large volumes of data on large clusters of
commodity machines. Nowadays, they are shifting from
pure batch computation to streaming computations [14, 13].
These systems describe the computation as a directed graph
of operators. Input data elements traverse this graph and
get processed one by one or in small batches.

Similar to DSMSs, operators include windows to collect
portions of the streaming data. Interaction with static
databases is possible, but no abstraction is provided to
model and update state information.

3. A MODEL FOR EXPLICIT STATE MAN-
AGEMENT

Figure 1 presents the model we envisage to enable ex-
plicit state management in stream processing systems. The
data received from the input streams is analyzed both in
the state management component and in the stream pro-

cessing component. The former elaborates the input data
according to a set of deployed state management rules to
update the current state of the system, stored in the state

repository. The latter processes the input data —together
with the state information— to continuously produce new
results for the users according to a set of deployed continu-
ous queries or, more in general, stream processing rules.

Users can also query the state of the system by submit-
ting queries as in traditional database systems. Finally, a
reasoning system can extract implicit knowledge from the
explicit state information to augment the answers to both
stream processing rules and one-time queries. Reasoning is
based on a formal description of the application domain, in
the form of ontologies.

483



3.1 Case study
We now exemplify the use of our model through a case

study. Let us consider a decision support tool to manage
an e-commerce Web site. The managers of the Web site
want to receive constant updates about the current trends
of product sales, the quality of service the Web site offers
—for instance, the average delay to deliver the products—,
and the status of the inventory.

Traditional stream processing systems can easily satisfy
these needs by periodically computing aggregates over slid-
ing windows. For instance, the current trend of sales could
be computed by summing up all the sales for each class of
products over a time window selected by the user.

Nevertheless, the products and their classification change
over time: new products are constantly added, new classes
are created, and previous classes of products are split or
merged. The information about the products and their clas-
sification is managed by a different division of the company,
which updates the management whenever it is needed.

The set of available products and their classification rep-
resent background state information that the management
needs to consider to correctly interpret the trends of sales.

Several approaches are possible to capture this state infor-
mation. On one extreme, state can be stored in a separate
database that is updated manually or semi-automatically
whenever new information about the products becomes
available. The stream processing system then accesses the
current data in the database during processing. On the other
extreme, the stream processing system might be responsible
to process both the information about the sales and the in-
formation about the products and their classification. This
approach complicates the stream processing rules, since they
need to take into account heterogeneous types of data —sales
and products classification— and their interaction. Further-
more, it becomes impossible to express all the processing by
means of computations over sliding windows. Indeed, the
system must ensure that all the information that builds up
the most recent classification of products is taken into ac-
count, independently from the time when such information
was generated.

In our model, we propose to explicitly store state informa-
tion and enable the stream processing system to access that
information during processing. We propose to encode the
logic that updates the state based on the input streaming
data into state management rules that the state manage-

ment component uses to automatically handle state changes.
This approach relieves the stream processing system from
analyzing information related to the products and their clas-
sification, thus simplifying the stream processing rules

that compute the selling trends.
Making the state explicit also enables the users to query

such state, which would not be possible if the state informa-
tion was only processed within the stream processing system.
We envision the possibility to implement the state compo-
nent as a temporal database, thus enabling the query and
retrieval of both the current state and historical data. In
our e-commerce case study, this enables the management to
retrieve and analyze past information about products and
sales to confront them with the current trends.

Finally, the state component can exploit domain infor-
mation —for instance in the form of ontologies— to derive
new knowledge from the explicit information it stores. For
instance, in the e-commerce example, the ontology might

include a taxonomy to organize the products according to
different classification criteria and to automatically derive
sub-classes relations.

3.2 The benefits of explicit state management
Based on the case study above, this section summarizes

the benefits we see in our proposed approach.

Separation of concerns. The proposed approach decouples
the management of state updates from the stream process-
ing logic. The former is encoded in the state management

rules while the latter is encoded in the stream process-

ing rules. This enables the developers of the system to
separately model these two orthogonal aspects.

Different abstractions. The separation of state management
from the stream processing logic enables the adoption of
separate abstractions for the two tasks. As discussed in Sec-
tion 1 and in Section 2, most stream processing languages
and systems are designed to express and perform contin-
uous computations over moving windows, and this is not
suitable to express state management tasks, since windows
might miss some relevant state information or include con-
tradictory data. By delegating the state management to
separate rules, our approach can adopt different formalisms
to express how the state is updated.

Queryable state. By making the state explicit, the proposed
model enables the users to query the state on-demand, po-
tentially referring to historical data. This would not be pos-
sible using only stream processing technologies that inter-
nally and implicitly store only the state required to execute
the stream processing rules, and do not offer primitives
to access such state. Also, queryable state can promote in-
teroperability, since stream processing systems can expose
their state and query the state of other systems.

Reuse of consolidated technologies. By clearly separating
state management from stream processing, the proposed
model can take advantage of consolidated technologies that
are optimized for these purposes. For instance, the stream

processing component can be easily implemented using
state-of-the-art stream processing languages and systems, as
presented in Section 2. Similarly, the state component can
adopt well studied algorithms and technologies to optimize
the evaluation of queries —coming both from the users and
from the stream processing component— and to perform
reasoning tasks.

3.3 Open research questions
This section highlights the open research questions that

we are currently investigating to concretely implement the
above model.

State management rules. The language used to express
state management rules greatly influences the expressiv-
ity of the system. In the simplest case, state transitions
are determined by some individual elements in the input
stream. For instance, in our e-commerce use case, an indi-
vidual input element might represent the new classification
for a product. However, we envision more complex situa-
tions in which a state transition is determined by multiple
streaming elements. We are currently investigating possible
abstractions to capture these scenarios.

State representation, query, and retrieval. An open research
question involves which state information to store —only
the current state or also historical data—, how to represent

484



this information —for instance, using a relational database
or a key-value store—, and which language to offer for state
query and retrieval.

Interaction between stream processing and state. Perhaps
the most challenging question is how to define the overall
semantics of the system, taking into account the possible
interactions between the state —and the state management

rules— and the stream processing rules. Considering
the e-commerce use case, we need to define how a change in
the classification of products might impact on the ongoing
streaming computation.

4. RELATED WORK
The limitations of fixed count or time windows in stream

processing is well known in the literature. To overcome
these limitations, some approaches propose windows that
are based on the content of input elements. Li et al. [10]
use content-based windows to define an effective evaluation
strategy for window aggregates. Similarly, predicate win-
dows [8] define views and support view maintenance in data
stream processing systems. They predicate on the content
of an input element to determine whether it has to be con-
sidered as new information, or as an update (or deletion) of
existing information for a given view. Frames [9] provide the
developers with built-in functions to simplify the statistical
analysis of data. Google Dataflow [1] proposes the concept
of session windows, which partition a stream based on some
user defined field —for instance, the identifier of a session
in an e-commerce Web site—. Our model builds on similar
ideas and takes a step forward by enabling the developer to
express state in a more general ways, using rules that define
how input elements impact on state.

Perhaps the closest work to our proposal is TEF-
SPARQL [7], an extension to the SPARQL query language
that distinguishes events from facts, where the latter are sim-
ilar to the timed data elements that build the state in our
model. TEF-SPARQL provides ad-hoc operators to com-
bine facts and events and a replace primitive to update the
set of facts. Nevertheless, TEF-SPARQL encodes the whole
logic to manage and update facts within stream processing
rules, whereas we separate the inference of new knowledge
—including new state elements— from stream processing
rules. Furthermore, we enable on-demand query of state.

5. CONCLUSIONS
Virtually all the state-of-the-art stream processing and

reasoning systems rely on fixed-size windows to isolate the
portions of input streams that are relevant for processing.
We move from the observation that this schema is not flexi-
ble enough to effectively model several application domains
and we propose a novel approach that enables the users of
a stream processing system to explicitly define and modify
the state of the application scenario at hand.

We believe that the approach we propose can advance the
state-of-the-art in stream processing and reasoning in two
orthogonal ways: on the one hand, it can ease the modeling
of application scenarios in which the state of the system
plays a fundamental role; on the other hand, it can simplify
the processing effort by limiting the amount of streaming
data that needs to be analyzed depending on the specific
state of the system.

In the near future, we plan to provide a more detailed

and precise formalization of our model, to implement the
model into a prototype stream processing system, and to
evaluate the befits of the proposed approach in terms of
modeling and processing. We will consider various real world
use cases with different requirements in terms of expressivity
and processing complexity.

6. REFERENCES
[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,

R. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. PVLDB,
8(12):1792–1803, 2015.

[2] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic.
EP-SPARQL: a unified language for event processing
and stream reasoning. In WWW, pages 635–644.
ACM, 2011.

[3] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. VLDB J., 15(2):121–142, 2006.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS, pages 1–16. ACM, 2002.

[5] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus. Querying RDF streams with
C-SPARQL. SIGMOD Record, 39(1):20–26, 2010.

[6] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Computing Surveys,
44(3):15:1–15:62, 2012.

[7] S. Gao, T. Scharrenbach, J. Kietz, and A. Bernstein.
Running out of bindings? integrating facts and events
in linked data stream processing. In
SSN-TC/OrdRing@ISWC, volume 1488 of CEUR-WS
Proceedings, pages 63–74. CEUR-WS.org, 2015.

[8] T. M. Ghanem, A. K. Elmagarmid, P. Larson, and
W. G. Aref. Supporting views in data stream
management systems. ACM Trans. Database Syst.,
35(1), 2010.

[9] M. Grossniklaus, D. Maier, J. Miller, S. Moorthy, and
K. Tufte. Frames: data-driven windows. In DEBS,
pages 13–24. ACM, 2016.

[10] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A.
Tucker. Semantics and evaluation techniques for
window aggregates in data streams. In SIGMOD
Conference, pages 311–322. ACM, 2005.

[11] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2001.

[12] A. Margara, J. Urbani, F. van Harmelen, and H. E.
Bal. Streaming the web: Reasoning over dynamic
data. J. Web Sem., 25:24–44, 2014.

[13] N. Marz and J. Warren. Big Data: Principles and best
practices of scalable realtime data systems. Manning
Publications Co., 2015.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: fault-tolerant streaming
computation at scale. In SOSP, pages 423–438. ACM,
2013.

485


	Break the Windows: Explicit State Management for Stream Processing SystemsAlessandro Margara, Daniele Dell'Aglio, Abraham Bernstein

