FlowDB: Integrating Stream Processing and
Consistent State Management

Lorenzo Affetti
Politecnico di Milano, DEIB
lorenzo.affetti@polimi.it

ABSTRACT

Recent advances in stream processing technologies led to their
adoption in many large companies, where they are becoming a
core element in the data processing stack. In these settings, stream
processors are often used in combination with various kinds of
data management frameworks to build software architectures that
combine data storage, processing, retrieval, and mining. However,
the adoption of separate and heterogeneous subsystems makes
these architectures overmuch complex, and this hinders the design,
development, maintenance, and evolution of the overall system.
We address this issue by proposing a new model that integrates
data management within a distributed stream processor. The model
enables individual stream processing operators to persist data and
make it visible and queryable from external components. It offers
flexible mechanisms to control the consistency of data, including
transactional updates plus ordering and integrity constraints.

The paper contributes to the research on stream processing in
various ways: we introduce a new model that has the potential to
simplify complex data-intensive applications by integrating data
management capabilities within a stream processing system; we
define data consistency guarantees and show how they are enforced
within this new model; we implement the model into the FlowDB
prototype, and study its overhead with respect to a pure stream
processing system using real world case studies and synthetic work-
loads. Finally, we further prove the benefits of the proposed model
by showing that FlowDB can outperform a state-of-the-art, in-
memory distributed database in data management tasks.

CCS CONCEPTS

« Information systems — Parallel and distributed DBMSs;
Stream management;

ACM Reference format:

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. 2017. FlowDB:
Integrating Stream Processing and

Consistent State Management. In Proceedings of DEBS 17, Barcelona, Spain,
June 19-23, 2017, 12 pages.

DOI: 10.1145/3093742.3093929

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’17, Barcelona, Spain

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5065-5/17/06...$15.00

DOI: 10.1145/3093742.3093929

Alessandro Margara
Politecnico di Milano, DEIB
alessandro.margara@polimi.it

Gianpaolo Cugola
Politecnico di Milano, DEIB
gianpaolo.cugola@polimi.it

1 INTRODUCTION

Many applicative domains require a near real-time processing of
a large volume of data as it becomes available. Examples include
fraud detection systems, distributed systems monitoring, social me-
dia notification services, and stock options analysis. In general, the
ability to analyze streams of data is vital in any modern informa-
tion system. Modern Stream Processors (SPs) address this need for
high-throughput and low-latency data processing by leveraging
large clusters of commodity machines to distribute the processing
load, and offer fault tolerance mechanisms to quickly recover from
machine failures. SPs describe data processing tasks as directed
graphs, where edges represent streams of data and nodes repre-
sent operators that transform input streams into output streams.
The model imposes that each operator only accesses its local state,
thus avoiding state access conflicts and enabling a high degree of
parallelism.

The recent advances in stream processing technologies and their
advantages in terms of performance, scalability, and fault tolerance
led to their adoption in the data processing stack of many large
companies. In these settings, SPs are often used in combination
with data storage and analysis frameworks such as transactional
and analytical databases, to build software architectures that com-
bine data storage, processing, retrieval, and mining [25]. However,
these architectures suffer from the complexity of managing two
or more separate subsystems with the need of correctly merging
their results, which makes it difficult to reason on the semantics of
the overall system, thus hampering its design, implementation, and
maintenance. Moreover, these architectures might waste resources
due to unnecessary data redundancy across different subsystems.

We believe that the need to integrate SPs with other data manage-
ment tools sheds light on some key limitations in the current model
of SPs, and in particular on some —missing— data management
capabilities. Moving from this premise, we present a novel model
that augments SPs by adding classic data management concepts.
The model enables the developers to make the state of operators
externally visible and queryable as in traditional databases, intro-
duces integrity constraints to validate the correctness of the data,
and provides transactional semantics and optional ordering guar-
antees for state updates. In this way, the model avoids the need
for external services for data query and retrieval, thus offering a
unifying data management layer with precise semantics and con-
sistency guarantees. More specifically, our model extends modern
distributed SPs with three novel concepts: (i) state operators, which
expose their internal state; (ii) transactional subgraphs, which de-
fine the portions of the processing task that require consistent state
management; (iii) integrity constraints, which specify application
specific correctness criteria.

DEBS ’17, June 19-23, 2017, Barcelona, Spain

We implement our model in the FlowDB prototype based on the
Flink open-source SP [5] and we evaluate its performance using
case studies and synthetic workloads. FlowDB does not introduce
additional overhead to pure stream processing in absence of state
management requirements and performs better than a state-of-the-
art distributed in-memory database in some classic data manage-
ment tasks.

To summarize, this paper contributes to the research on stream
processing in several ways: (i) it proposes a novel model for SPs
that integrates stream processing capabilities with classic data man-
agement concepts such as queryable state, integrity constraints,
and transactional operations; (ii) it implements this model in the
FlowDB prototype; (iii) it studies the benefits of our model using
case studies and synthetic workloads, comparing FlowDB with a
pure SP and a distributed in-memory database.

The remainder of this paper is organized as follows: Section 2
discusses the motivations behind our work; Section 3 describes
the model we propose to enhance the state-of-the-art SPs, with
particular emphasis on the consistency guarantees it proposes;
Section 4 discusses the design and implementation of the prototype
FlowDB system based on Flink; Section 5 empirically evaluates
the performance of FlowDB in terms of maximum throughput and
average latency; Section 6 reviews related work and Section 7 draws
the conclusions and the future directions of this work.

2 BACKGROUND AND MOTIVATION

Modern SPs such as Storm [27], Spark [29], Flink [11], and Google
Dataflow [4] organize the computation into a graph of operators.
Depending on the specific system, the graph can be explicitly de-
fined by the developer or generated from a higher level declarative
or functional language. Each operator within the graph transforms
elements of the input streams into elements of the output stream:
for instance, a typical “count” operator receives a stream of words
and continuously outputs the number of occurrences of each word.
This simple example highlights how each operator can store some
internal state required for the computation at hand —the current
count for each word in the previous example—. In the SP program-
ming model, the state of each operator is local, that is, it can be
accessed and modified only by that operator. This approach avoids
state access conflicts and enables a high degree of parallelism. In
particular, SPs achieve task parallelism by allocating different oper-
ators on different nodes and data parallelism by spawning multiple
instances of each operator, with each instance working on an in-
dependent partition of the input stream. For instance, in our word
count example, words can be redirected to four different instances
of the “count” operator depending on their starting letter, such that
each instance stores its own local state —the number of occurrences
of the words in its partition— with no need to access the state stored
into the other instances.

This model strives performance —parallelism with no risk of
data access conflicts— for generality and applicability. As an exam-
ple, consider a simple application that processes bank transactions,
as shown in Figure 1. The SP implements a single operator that
stores the current balance of each bank account, and updates the
accounts according to the received stream of input orders, which
can be either withdrawals — W, deposits — D, or transfers — T. To

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

— " || P1

— > || P2

P3

8= |w

Figure 1: The graph of computation for the bank system

enable data parallelism, the SP could partition the bank accounts
assigning them to four operator instances, P1, P2, P3, P4. This is
fine with deposit and withdrawal operations, that involve an indi-
vidual account and thus can be easily redirected to the partition
containing that account, but does not match transfers, which might
involve bank accounts belonging to different partitions. Moreover,
depending on the application semantics, some consistency guaran-
tees might be required to correctly implement the transfer logic:
for instance, the money transfer needs to be atomic with respect to
other operations and has to satisfy specific constraints, such as the
availability of a minimum amount of money in the source account.
Implementing these requirements represents an additional problem
for SPs, since they do not allow to address state across operators
or across partitions. Furthermore, SPs ensure the atomicity of exe-
cution of individual operators, but do not enable the specification
of atomic operations that involve data in multiple operators or
partitions. Finally, despite some initial proposals that we overview
in Section 6, the internal state of operators cannot be queried and
retrieved. In the bank scenario, this means that a user can only
receive real-time updates from a bank account as a result of order
processing, but cannot explicitly query the current balance of one
or more accounts.

To overcome the limitations above, current architectures store
state information —account balances— into dedicated database and
data management systems, which are queryable and offer trans-
actional updates with consistency guarantees. However, database
technologies are not oriented towards distributed elaboration of
large volumes of input data. This typically results in hybrid ar-
chitectures that complement database systems and SP systems to
exploit the best of the two worlds. However, the complexity of these
architectures might lead to two types of problems. On the one hand,
it may hinder the design, implementation, and maintenance of the
whole system. On the other hand, it may prove inefficient or over-
much expensive due to the need of replicating data and processing
tasks: the input streams of new data get duplicated and processed
by a layer responsible for data storage, query, and retrieval, and
by a layer responsible for (streaming) data analytics. To overcome
these problems we propose a new model that augments the current
SPs with data management features, such as transactional state
updates, integrity constraints, and ordering guarantees.

3 INTEGRATING STREAM PROCESSING AND
STATE MANAGEMENT

The model we propose strictly integrates the stream processing
capabilities of modern distributed SPs with the data management

FlowDB: Integrating Stream Processing and
Consistent State Management

N4

I>*”2—llk“4 '“61—
N

‘ -

Figure 2: Model overview

and query capabilities of transactional databases. The goal is to elab-
orate large volumes of streaming data on the fly, while consistently
updating data stores that are visible and queryable from external
components. In a nutshell, we inherit the processing model of dis-
tributed SPs that organize the computation as a graph of stream
transformation operators deployed on different threads and ma-
chines, and we enrich this model with an embedded data store
organized into a set of state nodes —the analogous of database
tables— that can be queried from external users and software com-
ponents. State nodes can in turn be partitioned, with individual
partitions possibly deployed on different physical nodes. As noted
in the recent database literature, the steadily decreasing price of
RAM is making disks obsolete as the primary data storage layer
for operational systems [23]. Hence, our model assumes the data
store embedded into the SP to reside in main memory and to be
replicated to disk only for the purpose of durability.

The model simplifies the control of the order and consistency
of updates to data stores, which would be difficult to obtain with
separate stream processing and data management systems. We
enable developers to specify integrity constraints on the content of
data, and to declare transactional sub-graphs. The model ensures
that the updates to state nodes that are part of a transactional sub-
graph occur under transactional semantics, and are invalidated in
the case one or more integrity constraints are violated. By enforcing
transactional semantics only within transactional sub-graphs the
model strives to provide strong consistency when needed and high
performance when possible.

In the remainder of the section, we present the model in detail,
we introduce the concepts and terminology that we adopt in the
rest of the paper, and we formalize the semantics of transactions
and the order and consistency guarantees they offer.

3.1 Model overview

In line with modern distributed SPs, we define the computation
as a directed graph G = (N, E), where edges represent unbounded
collections —streams— of elements, and nodes represent operators.
Figure 2 depicts our model using squares for operators and arrows
for streams. Streams originate from sources —triangles in Figure 2—,
and terminate in sink —diamonds in Figure 2—. Both sources and
sinks are outside the scope of the SP.

Operators consume and process elements from their input
streams, and produce elements in their output stream as a result.
For instance, a map operator applies a user-defined function to trans-
form each element in the input stream into an element of the output
stream. Similarly, a filter operator produces an output stream

DEBS ’17, June 19-23, 2017, Barcelona, Spain

that retains only the elements of the input stream that satisfy a
user-defined predicate. In general, operators can generate zero,
one, or more output elements in response to each input element
received, and might retain some internal state across the evaluation
of multiple elements, as shown in Section 2.

Operators can also be partitioned, with each partition consider-
ing a portion of the input streams. We denote the k partitions of
an operator n; as nll., cee n{c Each partition n{ processes one input

element at a time, on a single processing thread. Two partitions nf

and nf do not share state. Because of this, it is often necessary to
control the mapping of input elements to partitions. For instance,
if a partitioned operator is fed with words and needs to count the
number of occurrences of each word, the developer needs to ensure
that identical words are submitted to the same partition for the
total count to be correct. To do so, developers can specify a keyBy
function that takes an element and returns a key for that element.
Elements with identical keys are guaranteed to be processed within
the same partition. For instance, in the word count examples above,
the keyBy function could partition worlds by hashing them.

We say that an element e; causes an element e if e is produced
by a partition n]i as a result of processing e, and we write e; — ez.
We denote as e; = ey the transitive closure of the causal relation.

We call state operators the subset S C N of operators that embed
some state and make it visible and queryable from external users
and components. For example, in the bank account management
system introduced in Section 2, a state operator might store the
current balance of each account, which gets updated according to
the streams of input operations — deposits, withdrawals, transfers.
Similar to database tables, external software components and users
can query the operator to access the current balance of some ac-
count. Figure 2 includes three state operators —n3, ng, ng—, which
are represented in grey. As any other operator, a state operator
can be partitioned across multiple nodes. This enables to distribute
the costs for storing, accessing, and updating data across multiple
physical machines, thus making it possible to fit large datasets in
main memory.

The possibility to access the state of operators opens room for
consistency concerns. For instance, in our bank management system
one might want to always see either a money transfer operation
completed in both the source and the destination account, or in
none of them. However, if the source and the destination accounts
are stored in different partitions, they are updated independently,
and queries might retrieve inconsistent states in which only one
of the two partitions has been updated. Similar problems might
appear across different state operators. For instance, consider two
state operators: the first stores the current balance for each user,
the second the last ten bank operations for the same users. Queries
might want to see the effect of a bank operation in both states or
none of them.

Our model enables developers to define where consistency needs
to be enforced, and which consistency constraints are required.
Specifically, we introduce transactional subgraphs to identify the
portions of a processing graph that require consistency and in-
tegrity constraints to express application invariants that the update
to state must preserve. A transactional subgraph T = (N¢, E¢) is
a connected subgraph of G such that the set of state operators

DEBS ’17, June 19-23, 2017, Barcelona, Spain

St € Np is updated with transactional semantics, which means
that the updates satisfy atomicity, isolation, consistency, and order
guarantees, as discussed in more details in Section 3.2. Figure 2
shows two transactional subgraphs, T1, which includes node n3
alone, i.e., all partitions of n3; and Ty, which includes nodes ny, ns,
and ng. In our current implementation of the model, each trans-
actional subgraph receives in input a single stream and produces
zero, one, or more output streams. When an input element e enters
the transactional subgraph T, all the changes that e determines on
any state operator in T are performed atomically and in isolation
—that is to say, without interleaving effects from any other element
e1—. In other words, a transactional subgraph T guarantees that all
the state operators within T are updated as if only one element e
at a time was processed within T until completion, that is, until all
the elements caused by e exit T. Moreover, queries from external
components cannot observe intermediate states in which the effects
of an input element have been applied only to a subset of the state
operators in T. In practice, as discussed in the following, we adopt
finer grained concurrency control mechanisms that preserve a high
degree of parallelism while offering the semantics presented above.

Our model complements transactional subgraphs, which group
the state operators that need to be updated with transactional se-
mantics, with integrity constraints, which express application spe-
cific constraints on the state that need not be violated by state
updates. Integrity constraints can predicate on the state of any
node within a transactional subgraph. When an element e enters a
transactional subgraph T with integrity constraints C, the system
tries to apply all the changes to state operators that are triggered
by e or by any element caused by e. If these changes violate one
of the integrity constraints in C, all those changes are discarded
and the system produces a notification of integrity violation. As an
example of how integrity constraints work, consider again our bank
account management application. An integrity constraint might
express the impossibility for an account balance to drop below zero.
Any withdrawal or transfer operation that would lead to a nega-
tive balance must be discarded. In the case of a transfer operation,
which involves two updates of two distinct accounts caused by the
same tranfer request, both updates are discarded in the case of an
integrity constraint violation, even if the two accounts are stored
and managed in different physical nodes.

3.2 Consistency guarantees

We now discuss in more details the consistency guarantees that
transactional subgraphs and integrity constraints offer. Let us con-
sider a transactional subgraph T = (N, E;) including the set of
state operators Sy = (s¢ ...S,) C Ny and the set of integrity
constraints C = (c1 . .. cp) that predicate on S;. We denote as e a
generic element that enters T.

U(e, s¢;) is the set of update operations (changes) that the pro-
cessing of e determines on state s;; € S;. More precisely U (e, s¢;)
is the result of processing element e or any element e’ : e = ¢’
in the state node s¢,. U(e, T) is the set of all the update operations
triggered by e in any state operator s;, € N;. We say that e starts a
transaction 7 in T when e enters T. We say that terminates when
no more elements e U e’ : e = e’ need to be processed in any node
n € Ng.

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

We denote as O(T, e) the set of elements that are caused by e and
that exit the transactional subgraph T. More formally O(T,e) :=
e’ :e=e’ e’ €(i,j),i € Nt,j ¢ Ny, meaning that the set includes
any element e’ caused by e and that belongs to a stream (edge of
the graph) (i, j) that exits the transactional subgraph.

Finally, we represent a query Q as a set of read operations on a
set of state operators So-

3.2.1 Consistent state and atomicity. We say that the state of a
transactional subgraph T is valid if it does not violate any integrity
constraint ¢; € C. Given a transactional subgraph T with integrity
constraints C, and an element e that starts a transaction 7 on T, we
say that 7 is valid if the state of T is still valid after all the updates
in U(e, T) have been applied. Otherwise, we say that 7 is not valid.

Our model ensures that only valid transactions are executed
and that they are executed atomically, while non valid transactions
are discarded. In particular, when an element e enters a transac-
tional subgraph T, either all the updates U (e, T) are applied if the
transaction originated by e is valid, or none of them in the opposite
case.

Atomicity extends to external queries, which cannot observe
state configurations in which some updates in U(e, T) have been
applied and some not, but only configurations in which all the
updates in U (e, T) have been applied or none of them.

3.2.2 Isolation. Our model ensures isolation of transactions
within a transactional subgraph T. More specifically, the model
currently support serializable isolation [3], which ensures that the
results of two transactions 7; and 7, take place as if 71 and 72 were
executed in some sequential order, without any interleaving of their
updates to state operations. More formally, given a transactional
subgraph T and any two input elements e; and ez, the result of
processing e; and ez would be the same as if all the updates in
U(e1,T) were applied before all the updates in U(eg, T) or all the
updates in U (ez, T) were applied before all the updates in U(eq, T).

3.2.3 Order. Our model optionally enables developers to en-
force that the effects of transactions are the same as if they were
executed sequentially in the same order in which they started. More
formally, given a transactional subgraph T and two input elements
e1 and ey such that e; enters T before ey, our model ensures that
the results of processing e; and ey are the same as if all the updates
in U(e1, T) were applied before all the updates in U(ez, T), and that
for any pair of output elements e € O(er, T), e;, € O(ez, T) that are
caused by e; and ey, respectively, and that belong to the same out-
put stream (i, j) —e; € (i,), e; € (i,j)— e] appears on the output
stream (i,) before ej.

4 THE FLOWDB SYSTEM

We implemented the model presented in Section 3 in the FlowDB
prototype. FlowDB is based on the open-source Flink SP [11], which
it extends by introducing the concepts of state operators, transac-
tional subgraphs, and integrity constraints, and by implementing
the consistency guarantees discussed in Section 3. We first present
the FlowDB APl in Section 4.1 and then the FlowDB implementation
in Section 4.2.

FlowDB: Integrating Stream Processing and
Consistent State Management

4.1 FlowDB API

FlowDB is written in Java and extends the Flink data stream API,
which provides a functional interface to manipulate streams. The
code in Listing 1 exemplifies the API by showing a simple topology
that takes in input a stream of text lines linesStream and pro-
duces a stream of 2-tuples consisting of a word and the number
of occurrences for that word observed so far. First, the topology
splits each line into words using the flatMap operator that outputs
multiple elements (words) for each input element (line). Then, a
map operator converts each input word into a 2-tuple that contains
the input word in the first position and the integer 1 in the second
position. Finally, the keyBy operator groups the tuples by word and
sums up the second value within each group.

Listing 1: Word count example in Flink

DataStream <String > linesStream = getInputStream (...);

DataStream <Tuple2<String , Integer >> counts =
// Split line into words
linesStream . flatMap (line —> line.split("\t"))
// Convert each word w into a 2—tuple (w, 1)
.map(w —> new Tuple2<>(w, 1))
// Group by word (tuple field 0)
.keyBy (0)
// Sum up the count (tuple field 1)
.sum(1);

Partitioning of operators is semi-automatic!: for instance, the
sum operator can be partitioned and executed in parallel on different
threads or nodes. In this case, the keyBy primitive ensures that
tuples with the same word are delivered to the same partition,
which retains the state necessary to make the count correct.

Listing 2: Bank transfer example in FlowDB

DEBS ’17, June 19-23, 2017, Barcelona, Spain

as a key-value store. This enables FlowDB to split the key space in
partitions and to store state operators in main memory.

In Listing 2, FlowDB takes in input a stream of bank trans-
fers transferStream. The openTransaction opens a transac-
tional subgraph and transforms the input DataStream into a
TransactionalDataStream t. Then, the code splits each transfer
into the corresponding deposit and withdrawal, creating streams
Deposit and Withdrawal from t, and uses the state operator to
update the value of account. Let us consider the stream of deposits
dStream: first, deposits are grouped by account —keyBy primitive—
then the state operator is used to update the old value oldVal of
the account based on the amount of the deposit d. getAmount ().
The state operator returns the new value, which can be used for
further downstream operations. Finally, the closeTransaction()
operator closes the transaction. Although the example in Listing 2
defines a single state operator, the developers are free to include any
number of state operators within a transactional subgraph, that is,
between a openTransaction and a closeTransaction operators.
The presence of a transactional subgraph ensures the consistency
guarantees presented in Section 3, and in particular that the with-
drawal and the deposit that generate from the same transfer are
executed atomically, and that different transactions execute in isola-
tion. Furthermore, developers can instruct FlowDB to enforce that
transactions are processed in the same order in which they start by
passing a parameter to the openTransaction operator.

Listing 3: Integrity constraints in FlowDB

DataStream<Transfer > transferStream = getInputStream (...);

// Declare a state operator with String key and Float wvalue
StateUtils .newStateOp("account", String.class, Float.class);

// Open a transactional subgraph
TransactionalDataStream <Transfer> t =
transferStream.openTransaction ();

// Split a transfer into a withdrawal and a deposit
TransactionalDataStream <Withdrawal> wStream =
t.map(tr —> tr.getWithdrawal ());
TransactionalDataStream <Deposit> dStream =
t.map(tr —> tr.getDeposit());

// Apply the withdrawal to the "account" state

// and close the transaction

wStream . keyBy (w —> w. getAccount ())

.state("account", (oldVal, w) —> oldVal — w.getAmount())
.closeTransaction ();

// Apply the deposit to the "account” state

// and close the transaction

dStream . keyBy(d —> d.getAccount())

.state ("account"”, (oldVal, d) —> oldVal + d.getAmount())
.closeTransaction ();

// Apply the withdrawal to the "account" state

// and close the transaction

wStream . keyBy (w —> w. getAccount ())

.state("account”, (oldVal, w) —> oldVal — w.getAmount() ,
(oldval , w) —> oldVal — w.getAmount() >= 0)
.closeTransaction ();

FlowDB augments the Flink API with a state operator and
two openTransaction and closeTransaction primitives to de-
fine the boundaries of transactional subgraphs. Listing 2 shows
how a developer can implement the bank transfer scenario dis-
cussed in Section 2 by taking advantage of a state operator and a
transactional subgraph.

The StateUtils.newStateOp static method declares a new state
operator named account. In FlowDB, each state operator is defined

I The developers can provide hints for the desired degree of parallelism.

In line with the model in Section 3, FlowDB enables developers
to express integrity constraints on state?. Listing 3 modifies part of
the transfer example in Listing 2 to include an integrity constraint
to ensure that a withdrawal takes place only if it does not lead
to a negative account balance. Specifically, FlowDB evaluates the
predicate passed as third parameter to the state operator. If any
of the predicates expressed within a transactional subgraph are
not satisfied, then the transaction is considered invalid and all
the updates to the state performed within that transaction are
discarded. Developers may customize how FlowDB reacts to an
invalid transaction, for instance by writing to a log or by sending a
notification message through the network.

Finally, external components can submit read transactions —
queries—. At the time of writing FlowDB enables the retrieval of
values by key from one or more state operators. We plan to support
range queries in the next releases.

4.2 FlowDB implementation

FlowDB aims to provide consistent state management with lit-
tle overhead. To do so, it partitions state operators by key and

2The current implementation supports predicates over individual state operators, but
we plan to support predicates that combine multiple state operators in the next releases.

DEBS ’17, June 19-23, 2017, Barcelona, Spain

account

withdrawals

P1
map ey keyBy P closeTransaction

M P2
openTransaction

map > keyBy Ps

——=> closeTransaction

deposits P4

Figure 3: Topology of the bank transfer example

deploys each partition independently. For instance, the account
state in Listing 2 can be partitioned by account, such that
different accounts might be stored on different nodes. When
openTransaction is invoked on a DataStream, FlowDB creates
aTransactionalDataStream that wraps every element traversing
the stream with metadata used to enforce transactional semantics.
Specifically, each element entering the transactional subgraph is
annotated with a transactionID that uniquely identifies a transac-
tion and with a validity field that indicates whether any integrity
constraint has been violated.

4.2.1 Single state operator. Let us consider again the
bank account application. Figure 3 shows the topology that
FlowDB instantiates from the code in Listing 2. First, the
TransactionalDataStream that exits the openTransaction
operator —white arrow in Figure 3— is used in parallel by two map
operators to create the stream of withdrawals —black arrows in
Figure 3— and the stream of deposits —grey arrows in Figure 3—.
Each of these two streams enters a keyBy operator that delivers
the elements to the correct partition of the account state operator
based on the account they refer to. As an example, Figure 3 shows
the account state split into four partitions P1, P2, P3, P4. Finally,
both streams enter a closeTransaction operator.

Each element e in the TransactionalDataStream that exits the
openTransaction operator receives a different transactionID
and has validity=true. Each element e’ produced by a non-state
operator —e.g., the map operator— as a result of processing an el-
ement e is assigned with the same transactionID and validity
as e. Upon receiving an element e, a state operator updates its state
and produces an output element e’ with the same transactionID
as e and a validity that is true if no integrity constraints have
been violated and false otherwise. The closeTransaction oper-
ator computes the overall validity for the transaction based on the
validity value of all the elements with the same transactionID
(those caused by the element starting the transaction), and commu-
nicates it back to the state operator, which discards or confirms the
changes performed within the transaction depending on the validity
value it receives. In case of false validity, the closeTransaction
operator discards the elements produced during the transaction.

Notice that in some cases the elements part of the same transac-
tion (those caused by the element starting the transaction) reach
more than one closeTransaction operator. This is the case in
Figure 3. When this happens, FlowDB automatically and trans-
parently instantiates an additional coordinator operator that

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

accounts previous

thread pool .
’
| [T

!

input queue

|(A1,10)||(A2,12) || (A8, 4) || (A3, 2) |

A3

&%]
N

A8 | 25

Figure 4: Management of state within a single partition

collects the (partial) validity results of transactions from every
closeTransaction operator, combines them and becomes respon-
sible for communicating the results back to the state operators part
of the transaction.

We now discuss how each partition within a state operator is
implemented. Figure 4 shows the internal components of a partition
in the case of the account state operator used in our example. For
each input stream (e.g., the stream of deposits in our example), the
partition stores an input queue of elements (e.g., pairs of account
id and deposit amount in our example). Several threads from a
thread pool read in parallel from the input queue and update
the state accordingly. To ensure isolation, FlowDB uses a locking
mechanism that works at the granularity of the single (key, value)
pair stored by the state operator (individual accounts and their
balance in our example). A change to an account is not allowed
until all previous changes have successfully completed or have
been discarded. Figure 4 indicates locked elements with a star. Each
locked account has an associated entry in table previous, which
stores the value of that account prior to the execution of the last
change, and is used to discard the change in the case of an invalid
transaction.

Each thread from the thread pool reads from the input queue
in FIFO order, postponing the processing of elements that refer to
locked state until they get unlocked. For instance, in the situation
depicted in Figure 4 a thread would skip the first element because
it refers to the locked account A3, and would start processing the
next element, which refers to the non-locked account A8.

Elements get unlocked upon receiving a notification that a trans-
action has terminated —either successfully or violating some in-
tegrity constraint— from a closeTransaction operator or from
a coordinator. The communication of notifications is managed
using sockets, with each partition of a state operator accepting con-
nections from closeTransaction operators and coordinators on
a defined port. To avoid the overhead of continuously opening new
connections, FlowDB caches existing socket connections and reuses
them for future communication.

4.2.2 Enforcing ordering guarantees. The mechanism discussed
above ensures isolation of transactions through locking of resources.
Furthermore, it ensures consistency and atomicity by collecting the
validity of individual state updates and by accepting or discarding
all of them. However, if two elements e; and ey enter a state op-
erator and produce the output elements e] and e/, respectively, it
is not guaranteed that if e; precedes e; in the input stream e/ will

1
precedes e; in the output stream. Indeed, the two elements might

FlowDB: Integrating Stream Processing and
Consistent State Management

flatMap

F1 >

F2 :|>

Figure 5: Chains of operators and isolation

be processed in parallel in different state partitions or in different
threads within the same partition.

Developers may ask (by passing an ad-hoc parameter to the
openTransaction) for the order of the results in the output stream
to match the order of the elements in the input stream. In this case,
FlowDB automatically and transparently annotates elements with
sequence numbers and instantiates a scheduler component after
the state operator. The scheduler collects elements from all the
partitions and reorders them.

4.2.3 Chaining multiple operators. Chaining multiple operators
within a transaction might break isolation. Consider the situation in
Figure 5: two transactions 71 and 7 follow the flows represented by
grey arrows and white arrows, respectively. The flatMap operator
—partitioned across two nodes F1 and F2— produces two output
elements for each input element. We represent them with numbered
squares. The subsequent keyBy operator —also partitioned across
two nodes K1 and K2— forwards these elements to the correct parti-
tions within the following state operator state. Now suppose that
the two elements in transaction 7; update element el; in partition
P1 and element el3 in partition P3 and that the same happens for
the two elements in transaction 7. In this situation it may happen
that partition P1 processes the element coming from 7; before the
element coming from transaction 7z while partition P3 processes
the element in 73 before the element in 7y, thus breaking isolation.
In general, this issue occurs every time the results generated by
the elements in a single input stream are redistributed to different
output streams, and in the presence of a keyBy operator.

FlowDB solves these isolation problems by (i) automatically
detecting the points in a transactional subgraph where input
elements are re-partitioned, and by (ii) automatically introduc-
ing a scheduler that reorders the elements based on their
transactionlID, as discussed in the previous section.

4.2.4 Processing queries. Queries that involve the state accumu-
lated into a transactional subgraph T can be considered as special
read-only transactions. FlowDB exploits this analogy and imple-
ments queries as special elements that traverse T and collect the
values of interest from the state operators in T. These elements are
submitted by a query manager component that is also responsible
for collecting them once they have retrieved the values of interest.
The query manager processes each query g and extracts the set of
transactional subgraphs it needs to traverse. For each transactional
subgraph T, it creates an element el 1 that it submits within the
input flow of T. The element elq, T traverses T, collects the values of
interest, and reaches a closeTransaction operator, which delivers

DEBS ’17, June 19-23, 2017, Barcelona, Spain

it back to the query manager. Since queries are treated as any other
transaction, they are ordered to avoid isolation problems in the case
of multiple state operators in the transactional subgraph. As an
example, let us consider again the bank account example in Figure 3
and assume that a user submits a query to retrieve the balance for
a given account. The query manager receives the query, analyzes
it, and discovers that the query is interested in a value within the
account state operator. Thus, the query manager submits a query
element to the openTransaction operator that opens the transac-
tional subgraph including the account state. The query element
retrieves the desired value and reaches the closeTransaction op-
erator, that delivers the value back to the query manager.

Within a state operator, query elements are treated as any other
element: they are stored in the input queue and wait until the
resource they want to retrieve becomes available — not locked
by an ongoing transaction. Differently from other elements, query
elements access a state value with non-exclusive lock, thus ensuring
that multiple queries for the same value can run in parallel, as far
as no write transaction is currently trying to modify that value.

5 EVALUATION

The primary goal of FlowDB is to reduce the complexity of modern
data processing architectures. To achieve this goal and be useful in
practice, FlowDB has to provide an adequate level of performance
in terms of the volume and velocity of data it can handle. The
current FlowDB prototype builds on top of Flink version 1.1.2, a
mature open-source platform well known for its performance [11].
In absence of state operators and transactional subgraph, FlowDB
does not add any overhead to Flink and thus it offers the same level
of performance for pure stream processing tasks. Hence, we are
interested in assessing the behavior of FlowDB in the presence of
state operators and transactions. To do so, we design an experimen-
tal campaign with two main goals: (i) we want to study the absolute
performance of FlowDB and compare it with a state-of-the-art solu-
tion for data management in distributed environments; (ii) we want
to investigate which parameters affect the performance of FlowDB.

5.1 Experiment setup

We deploy FlowDB on a cluster of 20 Amazon EC2 t2 XL instances,
each equipped with 4 CPU cores and 16 GB of RAM. As a default
case study, we consider the bank account management application
presented in Section 4. In this application, FlowDB receives a stream
of input bank transfers that it splits into two streams of deposits
and withdrawals. Deposits and withdrawals that belong to the same
original bank transfer are processed within a single transaction.
Since the time to process an element depends on the number of
other elements that try to access the same state resources concur-
rently, we decided to assess the performance of FlowDB in two
situations: (i) we measure the overall time required to process 200k
bank transfer transactions when they are all submitted in a single
burst. In this case, the underlying Flink engine employs a back-
pressure mechanism that automatically adjusts the input rate at the
source based on the current load in the processing network. Thus,
dividing the overall processing time by the number of input trans-
actions processed gives us a precise estimate of the maximum input
throughput that FlowDB can sustain; (ii) we measure the latency for

DEBS ’17, June 19-23, 2017, Barcelona, Spain

Avg latency Throughput

FlowDB 8.2 ms 6235 tr/s
Flink 3.1 ms 68705 tr/s
VoltDB 5092 ms 589 tr/s

Table 1: Default case study: average latency and maximum
throughput for Flink, FlowDB, and VoltDB

processing individual bank transfer transactions when transactions
are submitted at 80% of the maximum input throughput.

In our default scenario, the state operator includes 100k differ-
ent bank accounts split in 8 partitions. The origin and destination
accounts for each bank transfers are selected randomly with a
uniform distribution. In all our experiments, we submit 20k input
elements before start measuring, to make sure that the system is
in a steady state. In the presence of a transactional subgraph, we
configure Flink to buffer elements for only 1 ms before transmitting
them to the next operator. Indeed, the default batching timeout of
Flink of 100 ms would delay the validation of transactions from a
coordinator and thus lock resources for longer than required.

5.2 Default case study

Using the default scenario described above, we measure the maxi-
mum throughput and the latency of FlowDB and we compare them
with the Flink SP version 1.1.2 —the same we adopt to implement
FlowDB— and the VoltDB in-memory distributed database version
7.0, which is well known for its excellent level of performance. In
VoltDB, we store the accounts in a partitioned table that spans 8
different machines® and we implement the transfer transaction as a
stored procedure that gets analyzed and precompiled at deployment
time thus eliminating all of the query plan processing overhead
during runtime execution?.

Table 1 shows the results we measured. FlowDB achieves a max-
imum throughput of more than 6200 input elements/s with an
average delay of 8.2 ms. By comparison Flink processes 68705 input
elements/s with an average latency of 3.1 ms. However, Flink does
not implement transactional semantics with the impossibility of
checking the validity constraint we use for our example. Hence,
Flink does not need to lock state elements and verify the validity
of the update operations. Thus, this test measures the overhead
of FlowDB in enforcing transactional semantics. The difference in
throughput can be explained by remembering that Flink can pro-
cess deposits and withdrawals in parallel, in any order, while the
transactional semantics of FlowDB introduces the cost of isolation
and atomicity — locking and validity check. Because of this, Flink
also requires fewer operators to implement the same scenario —for
example, it does not need a coordinator to compute the validity
of transactions— that justifies the reduced processing latency.

VoltDB achieves a throughput of 589 input elements/s with an
average latency of 5092 ms. This result is surprising and indicates
that write transactions are very expensive for VoltDB. To prove this
observation, we repeated the experiment by only submitting read
transactions — queries to the value of individual accounts. In this

3This is equivalent to the number of state partitions we have in FlowDB. However, in
this setting, VoltDB automatically creates 64 partitions.
“https://www.voltdb.com/blog/programming-voltdb-easy-flexible-and-ultra-fast

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

Single transact. subgraph —¥—
One transact. subgraph per state op.

7000
6000 %
5000
4000
3000
2000
1000

1 2 3 4 5
Number of state operators

Maximum input throughput (el/s)

(a) Maximum throughput

Single transact. subgraph —¥¢—
One transact. subgraph per state op.

Average latency (ms)

2 3 4 5
Number of state operators

(b) Average latency

Figure 6: Chain of dependent updates performed in series

scenario the performance of VoltDB increases significantly, leading
to a maximum throughput of 236186 elements/s with an average
latency of 7.48 ms. By comparison, in the case of only read transac-
tions, FlowDB achieves a maximum throughput of 11800 elements/s
and an average latency of 3.9 ms (with the same 8 nodes used by
VoltDB). This result shows that our model is promising: it out-
performs a state-of-the-art representative of in-memory database
systems in terms of transactional updates, and it offers consistent
levels of performance across read and write operations.

5.3 Microbenchmarking

We now present a number of experiments that investigate which
aspects have the highest impact on the performance of FlowDB. In
doing so, we shed light on interesting characteristics of our model
and of the underlying Flink platform.

5.3.1 Chain of dependent updates. As a first experiment, we
study how FlowDB behaves when considering a chain of updates
performed in series, one after the other, on different state operators.
This scenario mimics the case in which the data produced by a state
update is elaborated downstream and produces further updates to
other state operators. We consider both the case in which all the
updates occur within a single transactional subgraph and the case
in which the updates occur in separate transactional subgraphs.

Figure 6a shows the maximum throughput we measure while
increasing the number of state operators in the topology. With a

https://www.voltdb.com/blog/programming-voltdb-easy-flexible-and-ultra-fast

FlowDB: Integrating Stream Processing and
Consistent State Management

single state operator, FlowDB achieves a maximum input through-
put of more than 6200 elements/s, which decreases with the number
of state operators but remains close to 1000 elements/s even when
considering 5 state operators.

In the case of a single transactional subgraph, FlowDB needs to
ensure that all the state operators receive and process the transac-
tions in the same order. To do so, it introduces a scheduler between
any two state operators, which reorders the incoming elements.
Since we measure the maximum throughput by submitting input
elements at the maximum accepted rate, all transactions become
almost immediately available to the first state operator, which pro-
cesses them in parallel. As a consequence, transactions complete
out of order and accumulate in the subsequent scheduler before
being submitted to the next state operator. Conversely, reordering
of elements is not necessary in the case of different transactional
subgraphs, since each transactional subgraph can safely process the
elements in a different order. Given how similar are the performance
we measure in the two cases we may deduce that implementing
isolation by introducing total order through a scheduler does not
represent a bottleneck, even if many transactions accumulate in this
component. The use of one transactional subgraph for each state
operator appears to be slightly more expensive, leading to a lower
maximum throughput. This can be explained with the increased
complexity of the topology required to open and close a higher
number of transactions.

Figure 6b shows the average latency per transaction when the
input rate is 80% of the maximum input throughput. With a single
state operator, the average latency is well below 10 ms. Any addi-
tional operator slightly increases the latency due to the buffering
performed by the Flink platform. In the case all the operators are in
a single transactional subgraph, the overall latency remains below
20 ms even when considering 5 state operators. In the case each
state operator is part of a different transactional subgraph, the la-
tency increases up to more than 25 ms, due to the higher number
of operators used to implement each transactional subgraph.

The results above let us conclude that in FlowDB the cost for
ensuring isolation through a scheduler is negligible with respect to
the cost of opening transactions, locking resources, and establishing
the validity of a transaction. We will further study the cost of locking
in the following sections.

5.3.2 Independent updates. As a second experiment, we study
how the performance of FlowDB changes when considering inde-
pendent state updates that occur in parallel. As in the previous
section, we consider both the case in which all state updates occur
within a single transactional subgraph and the case in which state
operators belong to different transactional subgraphs. In the first
case, we duplicate the input stream across all the state operators in
the transactional subgraph. In the second case, we evenly distribute
input elements across the parallel transactional subgraphs.

In the case of a single transactional subgraph, the maximum
throughput —Figure 7a— decreases with the number of state op-
erators. This is due to the increased volume of input data and to
the need for collecting results from all the state operators to de-
termine the overall validity of a transaction. Conversely, in the
case of multiple transactional subgraphs, the maximum through-
put remains almost constant, due to the capability of FlowDB to

DEBS ’17, June 19-23, 2017, Barcelona, Spain

Single transact. subgraph —¥—
One transact. subgraph per state op.

7000 -
6000 %
5000
4000
3000
2000
1000
0 L L L
1 2 3 4 5
Number of state operators

Maximum input throughput (el/s)

(a) Maximum throughput

Single transact. subgraph —¥—
One transact. subgraph per state op.

v
<

Average latency (ms)

2 3 4 5
Number of state operators

e

(b) Average latency

Figure 7: Independent updates performed in parallel

process transactions entirely in parallel. The limited decrement of
throughput with 4 and 5 state operators can be explained with the
higher number of operators in the topology, which overcomes the
number of available cores in our testbed.

The same reasons motivate the behavior of the latency — Fig-
ure 7b. With multiple transactional subgraphs the latency remains
constant, while it slightly increases with a single transactional
subgraph. Most significantly, in absolute terms the overall latency
remains well below 10 ms even when increasing the number of
state operators. These results further demonstrate the applicability
of FlowDB to transactional tasks and prove that transactions do
not significantly affect processing tasks that occur in parallel.

5.3.3 Number of unique state keys. We now study how the pres-
ence of conflicts during the update of state operators impacts on
the performance of FlowDB. To do so, we consider again our de-
fault bank use case and we change the number of unique keys
—accounts— within the state operator. Figure 8 shows the results
we measured. As expected, the performance increases with the
number of unique keys: indeed, with a uniform selection of the
state elements to consider within each transaction, a larger set of
elements reduces the possibility for conflicts. Interestingly, with
only 1000 keys —a very small number that may introduce many
state conflicts—, FlowDB manages around 6000 elements/s. Further-
more, even in the extreme case of only 10 keys, FlowDB processes
close to 500 elements/s. We do not report any measure of latency

DEBS ’17, June 19-23, 2017, Barcelona, Spain

0.01 0.1 1 10 100 1000
Number of unique state keys (thousands)

Maximum input throughput (el/s)

Figure 8: Number of unique state keys

1 10 100
Number of state partitions

Maximum input throughput (el/s)

Figure 9: Scalability with the number of state partitioning

for this experiment, since it never changes. Indeed, as discussed
in the previous sections, we measure the latency when submitting
input elements at 80% of the maximum input throughput. Under
these circumstances, the system is not overloaded and the latency
only depends on the topology, which is fixed in this experiment.

5.3.4 Scalability. This section investigates how FlowDB scales
when increasing the number of state partitions, which enable for a
higher degree of parallelism when processing transactions. Figure 9
shows the results we measure in our default use case when chang-
ing the number of partitions from 1 to 64. As Figure 9 shows, the
number of partitions has a small impact on the maximum through-
put of the system when moving from 1 to 8 partitions. With more
than 8 partitions, the throughput starts increasing linearly with
the number of partitions, reaching almost 10k elements/s with 64
partitions. As in the previous experiment, the overall latency at
80% of the maximum input throughput remains constant —around
8 ms— and is not shown in figure.

5.3.5 Cost of queries. The possibility to access and query the
state of operators from external components is a key feature in
FlowDB. We now study how queries impact on the performance
of FlowDB by measuring the latency for both state updates and
query answering when changing the frequency of query arrival.
We consider again our default bank management use case, and we
reduce the number of distinct keys to 50 to better stress FlowDB
when submitting queries. Indeed, as discussed in Section 4, queries
lock state resources while reading and thus block incoming state
updates of those resources. We submit bank transfers between two
accounts as in all the previous experiment at a fixed rate of 4500

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

Latency for updates ——
Latency for queries

e ———— KKK

Average latency (ms)
oo

10 100 1000 10000
Frequency of queries (queries/s)

Figure 10: Cost of queries

transactions/s. Each query accesses the value of 5 different accounts.
We change the rate of queries from 10 to 5000 queries/s and we
measure the latency for processing bank transfer and queries.

Figure 10 shows the results we measure. We observe that the
latency for completing an update remains almost constant and
below 10 ms. Conversely, the latency for answering queries remains
constant up to 100 queries/s and then slightly increases. Indeed,
queries need to lock 5 accounts —10% of all the accounts available
in the system— to be successfully processed, and they conflict with
concurrent updates as well as with other queries. However, although
increasing, the query latency remains well below 20 ms even in the
case of 5000 queries/s. This demonstrates the applicability of our
approach to transactional queries.

6 RELATED WORK

Our work addresses the requirements of modern data-intensive ap-
plications that need to integrate consistent state management and
low-latency processing of large streams of information. Because of
this inter-disciplinary nature, the work is related to several fields, in-
cluding stream processing, database management, and consistency
in distributed systems.

6.1 Processing streams of data

The last decade saw an increasing interest in technologies to process
streams of data, and several systems have been proposed both from
the academia and from the industry. We distinguish two generations
of SPs. The first generation flourished in the mid 2000s and focuses
on the definition of abstractions to query streams of data as in Data
Stream Management Systems (DSMSs), or to detect situations of
interest from streams of low-level information, as in Complex Event
Processing (CEP) systems. The interested reader can refer to the
detailed survey of these systems by Cugola and Margara [15].
DSMSs usually rely on declarative query languages derived from
SQL, which specify how incoming data have to be selected, ag-
gregated, joined together, and modified, to produce one or more
output streams [7]. The reference model for DSMSs is defined in
the seminal work on the Continuous Query Language (CQL) [6].
In CQL, the processing of streams is split into three steps: first,
stream-to-relation operators —windows— select a portion of each
stream to implicitly create static database tables. The actual compu-
tation takes place on these tables, using relation-to-relation (mostly

FlowDB: Integrating Stream Processing and
Consistent State Management

SQL) operators. Finally, relation-to-stream operators generate new
streams from tables, after data manipulation. Several variants and
extensions have been proposed, but DSMSs mostly rely on the gen-
eral processing abstractions defined above. Thanks to the similarity
of their languages and processing models to SQL, most DSMSs
seamlessly interact with (relational) database systems to manage
static data. However, to the best of our knowledge, DSMSs typically
rely on the transactional mechanisms offered by the static data-
base for data consistency, and none of them address the problem of
distributed data management.

The Aurora/Borealis DSMS first introduced the idea of defining
the processing in terms of a directed graph of operators [2] and to
deploy the operators on different physical nodes [1]. This approach
deeply influenced the second generation of SPs that we overview
below and that are more closely related to the subject of this paper.

CEP systems were developed in parallel to DSMSs and represent
a different approach towards the analysis of streaming data, which
targets the detection of situations of interest from patterns of prim-
itive events [18, 22]. CEP systems consider the elements of a stream
as notifications of event occurrences and express patterns using
constraints on the content and time of occurrence of events [10, 14].

The Event Processing Network (EPN) formalism introducted by
Etzion and Niblett [18] represents event processing as a directed
graph of operators, and thus it shares many similarities to the
processing model considered in this paper.

The second generation of SPs has its roots in the research on
Big Data and comprises systems designed to process large volumes
of streaming data in cluster environments. The research on Big
Data initially focused on static data and batch processing and pro-
posed functional abstractions such as MapReduce [16] to automate
the distribution of processing. Subsequent proposals increased the
expressivity of MapReduce, enabling the developers to specify arbi-
trarily complex directed graphs of operators [29]. These systems
assume long running computations and provide fault tolerance
mechanisms to resume intermediate results if they are lost due to
the failure of one or more machines in a large cluster [28].

The second generation of SPs inherits the same processing model
based on a graph of functional operators, but focuses on dynamic
rather than static datasets. Some of them, for instance Spark Stream-
ing [30], provide streaming computations on top of batch process-
ing abstractions by splitting each stream into small static chunks
(micro-batches). However, this approach introduces some latency
(typically, in the order of seconds), since the SP needs to accumulate
data into micro-batches before starting the processing task.

Other SPs provide native support for streaming computations,
where stream elements move from an upstream operator to a down-
stream operator as soon as the former has completed its process-
ing task. This is the case of Storm [27], Heron [20], and Google
DataFlow [4], to name a few. This is also the model used in Flink [11],
that we adopt and extend in this paper.

Interestingly, a recent research proposal introduces the idea of
making the state of operators explicit to simplify the implementa-
tion of iterative machine learning algorithms [19]. However, the
proposed model only considers operations on state that are entirely
performed on a single machine, either because the machine stores

DEBS ’17, June 19-23, 2017, Barcelona, Spain

a single partition of a data structure or because it stores a replica of
the entire data structure, which is required to fit in main memory.

Finally, reactive update of stateful variables have been widely
studied by the programming languages community in the domain of
reactive programming [8]. Reactive programming (RP) shares many
similarities with stream processing, and grounds on abstractions to
define dependencies between time changing values and automated
propagation of changes. Some recent proposals in the field study
the trade off between consistency and performance in distributed
RP, which is closely related to the topic of this paper [17, 24].

6.2 Distributed databases

Distributed relational database systems ensure ACID properties
through locking or optimistic concurrency control [21]. NoSQL
database often trade consistency for performance: for instance the
document-based database MongoDB only supports transactions
that involve a single document [9], and the Redis key-value store
does not fully support arbitrary distributed transactions [12].

So called NewSQL database systems aim to reconcile the two
worlds offering strong consistency and efficient distributed data
management. H-Store [26] is an in-memory database that en-
forces atomicity of transactions on individual sites through sin-
gle threaded computations, and schedules multi-site operations to
ensure ACID properties. Furthermore, H-Store supports reactive
behaviors through deterministic and parametric stored procedures.
S-Store extends H-Store to deal with streaming workloads [13]. S-
Store defines the stream processing capabilities on top of an OLTP
system (H-Store), implementing streams as time-varying tables and
stream processing as triggers. This approach later evolved in the
VoltDB database system that we used in our evaluation [23].

6.3 Big Data architectures

To solve the dichotomy between consistent state management and
low-latency stream processing, some data processing architectures
have been proposed in the last few years and have been increasingly
adopted in the data processing stack of several companies. Nathan
Marz first proposed the Lambda Architecture to meet the need for
low-latency results, while providing exact, reliable, yet “old” results
in case of failures [25]. The Lambda architecture was conceived
when SPs did not provide full support for distributed, fault-tolerant,
and stateful computation and where used as a fast speed layer that
could potentially provide wrong results in the case of failures. The
Lambda architecture couples this speed layer with a batch layer
that runs periodic batch jobs to generate higher-latency but exact
results. When the data is queried, the serving layer encapsulates
the complex logic that decides whether to serve the results of the
speed layer —recent, but possibly inaccurate— or those of the batch
layer —accurate, but possibly outdated—.

More recent proposals are questioning this type of architecture
because of its complexity and high maintenance costs, and foster
the development of stream-only architectures, where the SP plays
a more central role®. Some of these proposals —including Flink ver-
sion 1.2°— also introduce the concept of queryable state, although

Shttp://milinda.pathirage.org/kappa-architecture.com/
®https://ci.apache.org/projects/flink/flink-docs-release- 1.2/dev/stream/queryable_
state.html

http://milinda.pathirage.org/kappa-architecture.com/
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/stream/queryable_state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/stream/queryable_state.html

DEBS ’17, June 19-23, 2017, Barcelona, Spain

focusing on the state of individual operators. Our proposal can
be considered as an evolution of these architectures that embeds
state within the SP and enables transactional updates that involve
operations on multiple operators.

7 CONCLUSIONS

Modern companies often rely on data processing architectures that
integrate stream processing and data management systems. These
architectures are often complex and make it difficult to reason on
the correctness and consistency of the data they produce.

To solve this problem, we propose an innovative model that
tightly integrates state management within a distributed SP system.
The model extends SPs with three key novel concepts: transactional
sub-graphs, integrity constraints, and consistency guarantees.

The paper presents the model and its implementation in the
FlowDB prototype system. We evaluate the performance of FlowDB
using synthetic benchmarks and a realistic case study. The promis-
ing results we measure let us believe that our model has the po-
tential to simplify the design, implementation, and validation of
large-scale data-intensive information systems while providing an
adequate level of performance.

As future work we plan to refine our implementation and test
it with multiple workloads from real-world projects. Specifically,
we plan to study fault tolerance in the presence of transactions,
and to include additional levels of consistency, enabling develop-
ers to choose the trade-off between consistency and performance
that better suite their needs. We will also investigate alternative
protocols to ensure transactional semantics, including optimistic
protocols for isolation.

REFERENCES

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong
hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. 2005. The design of the borealis
stream processing engine. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR °05). Asilomar, CA, 277-289.

[2] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: A New Model and Architecture for Data Stream Management. The VLDB
Journal 12, 2 (2003), 120-139.

[3] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions. In
Proceedings of the International Conference on Data Engineering (ICDE ’00). IEEE,
67-78.

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-
of-order Data Processing. The VLDB Journal 8, 12 (2015), 1792-1803.

[5] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinldnder, Matthias J. Sax, Se-
bastian Schelter, Mareike Hoger, Kostas Tzoumas, and Daniel Warneke. 2014.
The Stratosphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (2014),
939-964.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. The VLDB Journal
15, 2 (2006), 121-142.

[7] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. 2002. Models and Issues in Data Stream Systems. In Proceedings of the
Symposium on Principles of Database Systems (PODS ’02). ACM, New York, NY,
USA, 1-16.

[8] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reactive Programming.
Comput. Surveys 45, 4 (2013), 52:1-52:34.

[9] Kyle Banker. 2011. MongoDB in Action. Manning Publications Co., Greenwich,
CT, USA.

(10]

[11

(12]

[13]

[14

[15

(17

(18

[19]

[20

[21]
[22]

[23

[24

[25

[26

[27

(28]

[29

(30]

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola

Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher,
Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White. 2007.
Cayuga: A High-performance Event Processing Engine. In Proceedings of the
International Conference on Management of Data (SIGMOD’07). ACM, New York,
NY, USA, 1100-1102.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bullettin 38, 4 (2015), 28-38.

Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co., Greenwich,
CT, USA.

Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John Mee-
han, Andrew Pavlo, Michael Stonebraker, Erik Sutherland, Nesime Tatbul, and
others. 2014. S-Store: a streaming NewSQL system for big velocity applications.
Proceedings of VLDB 7, 13 (2014), 1633-1636.

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: A Formally Defined
Event Specification Language. In Proceedings of the International Conference on
Distributed Event-Based Systems (DEBS’10). ACM, New York, NY, USA, 50-61.
Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing. Comput. Surveys 44, 3,
Article 15 (2012), 15:1-15:62 pages.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM 51, 1 (2008), 107-113.

Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. 2014. Dis-
tributed REScala: An Update Algorithm for Distributed Reactive Programming.
In Proceedings of the International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA,
361-376.

Opher Etzion and Peter Niblett. 2010. Event Processing in Action. Manning
Publications, Greenwich, CT, USA.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter R.
Pietzuch. 2014. Making State Explicit for Imperative Big Data Processing. In
USENIX Annual Technical Conference. USENIX Association, Berkeley, CA, USA,
49-60.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD ’15). ACM, New York, NY,
USA, 239-250.

H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems 6, 2 (1981), 213-226.

David C. Luckham. 2001. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, Boston, MA, USA.
Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking main memory oltp recovery. In Proceedings of the International
Conference on Data Engineering (ICDE 2014). IEEE, 604-615.

Alessandro Margara and Guido Salvaneschi. 2014. We Have a DREAM: Dis-
tributed Reactive Programming with Consistency Guarantees. In Proceedings of
the International Conference on Distributed Event-Based Systems (DEBS '14). ACM,
New York, NY, USA, 142-153.

Nathan Marz and James Warren. 2015. Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications Co., Greenwich, CT, USA.
Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The end of an architectural era (It’s time
for a complete rewrite). In Proceedings of VLDB (VLDB ’07). VLDB Endowment,
1150-1160.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In
Proceedings of the International Conference on Management of Data (SIGMOD ’14).
ACM, New York, NY, USA, 147-156.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the Conference on Networked Systems Design and
Implementation (NSDI'12). USENIX Association, Berkeley, CA, USA, 2-2.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of the
Conference on Hot Topics in Cloud Computing (HotCloud’10). USENIX Association,
Berkeley, CA, USA, 10-10.

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ton Stoica. 2013. Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In Proceedings of the Symposium on Operating Systems Principles (SOSP ’13).
ACM, New York, NY, USA, 423-438.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Integrating stream processing and state management
	3.1 Model overview
	3.2 Consistency guarantees

	4 The FlowDB system
	4.1 FlowDB API
	4.2 FlowDB implementation

	5 Evaluation
	5.1 Experiment setup
	5.2 Default case study
	5.3 Microbenchmarking

	6 Related Work
	6.1 Processing streams of data
	6.2 Distributed databases
	6.3 Big Data architectures

	7 Conclusions
	References

