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ABSTRACT

In CEP systems, processing takes place according to user-
defined rules, which specify the relations between observed
events and phenomena of interest. Writing such rules may be
challenging, also for domain experts. It requires answering
several questions: which events are relevant for the situa-
tion to detect and which are not? Which values should they
carry? Do they need to appear in a specific, temporal order?
To answer these and similar questions, we developed iCEP,
a framework based on machine learning techniques to help
the users in determining the hidden causality between the
events received from the external environment and the situ-
ation to detect. iCEP analyzes historical traces and learns
from them. It is a highly modular system, with different
components considering different aspects of the rules. De-
pending on their knowledge of the domain, users can decide
which modules to deploy and can provide hints to guide the
learning process and increase its precision. In this paper, we
present the design and development of iCEP in details and
we evaluate its precision in a range of situations.

1. INTRODUCTION

Complex event processing (CEP) supports interpretation
and combination of primitive events observed by a set of
sources, into higher level composite events to be notified in
real-time to the sinks in charge of reacting to them. The
relationship between primitive events and the corresponding
composite ones is given by a set of rules, which the CEP
Engine interprets at run-time to guide its processing.

Examples of domains where such technology can be ap-
plied are sensor networks for environmental monitoring [12,
23]; financial applications requiring a continuous analysis of
stocks to detect trends [18]; fraud detection tools, which ob-

serve streams of credit card transactions to prevent frauds [41];

RFID-based inventory management systems, which perform
a continuous analysis of registered data to track valid paths
of shipments and to capture irregularities [43]. More in gen-
eral, as observed in [32], the information system of every
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complex company can and should be organized around an
event-based core that acts as a nervous system to guide and
control the operation of other sub-systems.

Moving from this premise, the last few years saw both
the academia and the industry proposing a number of CEP
engines, each one bringing its own data model, rule defini-
tion language, and processing algorithm [16]. Despite these
differences, all of them suffer from an intrinsic limitation:
modeling composite events in terms of rules that predicate
over primitive ones is not trivial, nor human friendly, even
for domain experts.

To understand the reason of this difficulty, let us consider
two tipical domains for CEP: financial stock analysis and
fraud detection systems. They are both characterised by
massive streams of elementary data to be analysed in real-
time with the goal of identifying situations of interests (e.g.,
a stock trend that suggests to buy or sell or a fraud happen-
ing). As a consequence, they are perfect examples where
applying CEP technology. At the same time, writing rules
for these settings is extremely challenging, even for domain
experts. Indeed, both domains have a fundamental aspect
in common: we largerly ignore the general mechanisms that
guide their evolution. More specifically, we ignore the causes
that actually trigger composite events. It is this causal re-
lationship that we need to write the CEP rules that the
engine has to interpret, and the fact that we largerly ignore
it explains the difficulty in using CEP technology.

To overcome this limitation and wield all the potential
hidden in CEP, we need a set of techniques to support auto-
mated rule generation. More specifically, we have to identify
the conceptual foundations and the key algorithms that al-
low to learn from history traces of past primitive and com-
posite events, the CEP rules that effectively and efficiently
capture the hidden causal relationship of a given domain.

This is exactly the goal of this paper, which contributes
to the research on CEP in three distinct ways. First it pro-
vides a precise but general definition of the automated rule
generation problem, concretely referring to the operators of
CEP languages as illustrated in [16]. Secondly, it discusses
a general approach to this research challenge that builds on
three fundamental pillars: decomposition into sub-problems,
modularity of solutions, and ad-hoc learning algorithms. Fi-
nally, it provides a concrete initial solution to the problem:
the iCEP framework. iCEP supports automated rule gen-
eration for CEP by relying on machine learning techniques
to help users in determining the hidden causality between
the events received from the external environment and the
situation to detect. More precisely, iCEP assumes to have



historical traces of events and analyzes them using super-
vised learning techniques to derive relevant CEP rules. It
adopts a highly modular design, with different components
considering different aspects of the rule, which allow users
to decide, based on their knowledge of the domain, which
modules to adopt and which hints to provide to guide the
learning process and increase its precision.

The rest of the paper is organized as follows. Section 2
presents the problem statement in details, decomposes it
into subproblems, and presents the general approach we pro-
pose, underlying its added-value. Section 3 provides the
details of the iCEP framework, including an overview of
the underpinning machine learning techniques. The perfor-
mance of the iCEP prototype is studied in Section 4, high-
lighting our preliminary results and outlining the potential
improvements. Finally, Section 5 describes related work and
Section 6 provides some conclusive remarks.

2. ON AUTOMATIC RULE GENERATION
Here we introduce the problem we address in detail and

describes the general approach we follow.

2.1 Events and CEP operators

The number of CEP engines and accompanying rule lan-
guages that have been proposed by industry and academia in

the last few years can be roughly separated in two classes [16].

Those known as Data Stream Management Systems [9] of-
fer a processing model that is similar to that of relational
databases, augmented with ad-hoc operators to support on-
the-fly data processing. Similar to SQL queries, the rules
of DSMSs include operators that specify how to manipulate
and aggregate the (streaming) input information to generate
new output streams. A different model is proposed by the
community working on event-based systems. The focus in
this case is on detecting composite events by observing how
primitive events relates in terms of content and ordering.
These systems provide rule languages that allow to specify
patterns of primitive events that trigger composite ones

The examples provided in the remainder of the paper be-
long to this second class, but most of the results we provide
can be applied to both classes of systems. Indeed, despite
their differences, it is possible to identify an abstract event
model that covers most of the systems proposed so far, and a
relatively small number of abstract operators that they have
in common and that cover most scenarios. To put the basis
for a precise definition of the problem we address, the next
paragraphs present this event model and abstract operators
in detail.

Event model. We assume that each event notification is
characterized by a type and a set of attributes. The event
type defines the number, order, names, and types of the
attributes that compose the event itself. We also assume
that events occur instantaneously at some points in time.
Accordingly, each notification includes a timestamp, which
represents the time of occurrence of the event it encodes. As
an example, the following notification:

Temp@10 (room=123, value=24.5)

captures the fact that the air temperature measured inside
room 123 at time 10 was 24.5C.

CEP operators. In most CEP languages, composite events
are defined using a pattern of primitive events. When such
a pattern of events is identified the CEP engine may assume

that the corresponding composite event has happened, and
it may notify the interested components. As an example,
the composite event Fire could be associated with smoke
and high temperature. When smoke and high temperature
notifications reach the engine it generates a Fire event.

To describe patterns of events, CEP languages use a num-
ber of operators. In this paper we consider five of those
envisaged most relevant in [16]: selection, conjunction, se-
quence, window, and negation. Selection, filters relevant
event notifications according to the values of the parameters
they hold. Conjunction, considers patterns of event notifica-
tions composed by two or more events. Sequence, relates two
or more event notifications that must happen in a certain or-
der (of time). Windows, define the maximum timeframe of
a given pattern. Finally, negation is used to express the fact
that an event must not happen for the composite event to

be detected.

To make this description more concrete but anyway gen-
eral, here and in the remainder of the paper we use an ad-
hoc, simple and intuitive syntax for event patterns, which
supports the five operators above. The patterns that fol-
low exemplify this syntax and how the five operators listed
above can be used to capture an hypothetical event of Fire:

Pattern P1
within 5m. { Smoke() and Temp(value>50) }

Pattern P2

within 5m. { Smoke() and Temp(value>50) and Wind(speed>20) }
where { Temp->Smoke, Wind->Smoke }

Pattern P3

within 5m. { Smoke() and Temp(value>50) and not Rain(mm>2) }

where { Temp -> Smoke }

Pattern P1 uses the selection operator to choose only Temp
notifications whose value exceeds 50C, while it introduces
a window of 5 minutes to find both Smoke and Temp (con-
junction). Similarly, Pattern P2 shows how the sequence
operator can be used to state that both Temp and Wind must
precede Smoke within the window of 5 minutes. Finally,
Pattern P3 shows how negation can be used to state that
Rain must not happen within the 5 minutes window for the
pattern to be detected.

Notice that in selecting event notifications we support
complex predicates composed of a logical disjunction of fil-
ters, each composed of a logical conjunction of constraints
on single attributes. As an example, the following pattern:

Pattern P4
Temp( (value>=50 and value<=100) or value=0)

selects Temp events that carry a temperature reading equal
to 0 or included between 50 and 100.

2.2 The problem

Moving from the premises above, the problem we address
can be formalized as follow: given a set of event traces O,
and a composite event CE such that for each event trace
€ € O either CE is the last event in € or it is missing from
€, derive the pattern of primitive events whose occurrence

leads to CE.
As an example, from the three traces below:

T1: A0, AQ5, BQ10, C@15, CE@Q15
T2: AQO, AQ7, AQ10, C@15
T3: AQ0, BQ5, BQ27, C@30, CEQ30

one could infer that CE happens when:



within 56s. { B() and CO) }
where { B->C }

This is clearly a fictional example. In practice, to derive the
pattern of primitive events that is relevant for a given situ-
ation we need much more traces, as there are many aspects
that must be precisely determined and the space of the so-
lution is very large. The next section clarifies these issues
and describes the general approach we propose to address
them.

2.3 The general approach

If we think at the kind of event patterns we have to iden-
tify, we may observe that the problem we try to solve, as we
defined it above, can be decomposed into five sub-problems,
each linked to one of the abstract operators we consider:

1. determine the relevant timeframe to consider, i.e., the
window size;

2. identify the relevant event types and the relevant at-
tributes;

3. identify the predicates that select, among the event
types identified above, only those notifications that are
really relevant, i.e., determine the predicates for the
selection operator;

4. determine if and how relevant events are ordered within
the time window, i.e., the sequences;

5. identify which event should not appear for the com-
posite event to happen, i.e., the negated event notifi-
cations;

It is our belief that this decomposition should not remain at
a logical level but it should become the high level descrip-
tion of the algorithm to follow. In particular, we suggest
that each one of the steps above could and should be imple-
mented into a different module of a hypothetical system for
CEP rule inference. The clear separation among these steps
allows the five modules that result from them to operate sep-
arately from each other, possibly using different strategies
and technologies for their implementation. The next section
shows a possible approach to come to this implementation,
which heavily relies on machine learning to automate all the
five steps, but the sharp decomposition above allows each
of these steps to get different implementations for different
domains, while some of them could be realized by asking a
domain expert instead of relying on software. As an exam-
ple, there are scenarios in which the window size is known a
priori and so the first module could be eliminated altogether,
while in other scenarios only relevant events are captured,
thus eliminating the need for the second step. We will come
back to this issue later.

3. TOWARDS A SOLUTION

The problem decomposition described in the previous sec-
tion directly reflects in the modular architecture of iCEP,
which is presented in Figure 1. It consists of 5 main compo-
nents: (i) the Events and Attributes Learner determines
which event types and which attributes inside events are rel-
evant for the rule; (i7) the Window Learner determines the
size of the temporal window that contains relevant events;
(#ii) the Predicates Learnmer infers the predicates that se-
lect relevant events based on the values of their attributes;

Requires { }
Optional { Size of Window }

Requires { }
Optional { Relevant Events/Attributes }

—

Events and Attributes Learner Window Learner

Produces { Events/Attributes } Produces { Size of Window }

! !

Requires { Events/Attributes, Size of Window }
Optional { }

Predicates Learner

Produces { Predicates }

I

Requires { Predicates, Size of Window }
Optional { }

Requires { Predicates, Size of Window }
Optional { }

Sequences Learner Negations Learner

Produces { Sequences } Produces { Negations }

Figure 1: The High-Level Architecture of iCEP

(iv) the Sequences Learner discovers ordering relationships
among primitive events; finally, the Negations Learner in-
fers negations.

Figure 1 reports the input and output of each component,
with arrows representing dependencies among components.
For example, both the Sequences Learner and the Nega-
tions Learner depend on the Predicates Learner, since
they rely on the set of predicates that select relevant events
in order to operate. Worth noticing here is the circular de-
pendency that exists between the Events and Attributes
Learner and the Window Learner. They require each other
output to perform their computation. As we will better
explain later, in absence of user-provided information that
may solve this dependency, we address it by letting the two
components run one after the other iteratively, refining an
initial hypothesis to arrive at a precise determination of both
events, attributes, and windows. Notice also that in specific
domains the expertise of users may suggest deploying only
a subset of the components above. For instance, if the set
of relevant events and attributes is known, it can be explic-
itly provided to the Predicates Learner and to the Window
Learner, thus eliminating the need of the Events and At-
tributes Learner.

iCEP is entirely written in Java and relies on the Weka
Data Mining Software 3.7.7 [26] for solving machine learning
problems and generating decision trees.

3.1 Machine Learning: an Overview

Before describing the algorithms implemented inside each
component of iCEP, this section briefly introduces the gen-
eral concepts and the machine learning techniques it adopts.

As it name suggest, machine learning aims at building
algorithms that allow to learn from data. In particular,
iCEP relies on supervised learning techniques [28]. Gener-
ally speaking, these techniques take a set of labeled problem
instances as their input, each problem instance being mod-
eled as a vector of variables!, and produce a set of rules as
output, which classify instances, i.e., they map every pos-
sible instance (not only those given as input) to a certain
label.

A classical example of supervised learning is the weather
problem [37], which concerns the conditions that are suitable
for playing a soccer game. Instances are modeled using four

!The exact name used in supervised learning is more often
“attribute”, but we use “variable” here to avoid clashes with
the concept of event attribute.



A =no; B =no; C =yes; D = yes; Occurred = no
A =yes; B =yes; C =no; D = no; Occurred = yes

Figure 2: Events and Attributes Learner: Example
of Instances Definition

variables: outlook, temperature, humidity, and windy. La-
bels specify if a given instance represents a situation in which
playing is possible or not. The output of a machine learning
technique applied to this problem is a set of rules that deter-
mines if playing given the weather conditions that hold, e.g.,
“if outlook = rainy and windy = true, than play = no”, “if
humidity = normal, then play = yes”. Notice that variables
may be associated with boolean values (e.g., windy), with
an enumeration of atoms (e.g., outlook), or with numerical
values (e.g., temperature). Finally, rules can be expressed
using different formalism, e.g., using if-then statements, as
exemplified above, or though decision trees.

In iCEP, each instance represents a trace of observed
events. It has an associated label Occurred, which assumes
the value yes if the composite event of interest occurs at
the end of the trace, and no otherwise. Let us call positive
instances the former, and negative instances the latter. The
precise way in which instances are modeled (in terms of vari-
ables) depends on the iCEP component, e.g., in some cases
we use variables to encode the happening of an event of a
certain type, while in other case we use them to represent
the value of specific attributes of occurring events.

3.2 Events and Attributes / Window Learners

As we already mentioned, the Events and Attributes
Learner and the Window Learner operate in close collab-
oration. The former assumes known the time-span in which
searching for the primitive events that caused the composite
event of interest, and it searches this “window” to determine
which event types (and which attributes within those types)
are relevant. The latter assumes known the set of relevant
events and attributes and determines the time window in
which they appear.

3.2.1 Events and Attributes Learner

We start our analysis from the Events and Attributes
Learner, assuming a lookup window win. Depending on
the format and semantics of primitive event notifications, we
consider different variables to encode our machine learning
problem.

Inference of Event Types. To illustrate our approach, we
start from the simplest case, assuming that each event noti-
fication e is simply identified by its type; this means either
that e does not include any attribute, or that the values of
such attributes are known not to influence the occurrence of
the composite event of interest. To determine which primi-
tive events are possible causes of the composite one, we look
at the event types that appear in the time window win,
considering both positive and negative problem instances.
More specifically, we define a different boolean variable

for each event type t, which assumes the value yes if at least
one event of type ¢ occurred in the considered window, and
no otherwise. Figure 2 exemplifies this approach. We con-
sider a scenario in which 4 types of primitive events exist,
namely A, B, C, and D, and we are interested in detect-
ing the composite event CE. The top of Figure 2 shows
two history traces that record past occurrences of primitive
and composite events. Below, we show the two problem in-
stances generated from such traces considering a window of
size win. The first one includes an event of type D and one
event of type C, but no events of type A and B. It is a
negative instance (labeled Occurred = no) because no com-
posite event occurs at the end of the trace. On the contrary,
the second trace ends with the occurrence of CE, and thus
it gives rise to a positive instance (labeled Occurred = yes),
which includes an event of type A and one event of type B,
but no events of type C' and D.

After generating the instances, we use them to determine
which variables —i.e., which primitive event types— are rele-
vant. To do so, we consider a measure of how informative
the presence of a variable is with respect to the occurrence
of the composite event of interest. In particular, we adopt
the Information Gain Ratio [37] of each variable v, IGR,,
as a measure of its relevance. If the IGR, of a variable v
that represents a primitive event type ¢ overcomes a certain
threshold, we consider t as relevant for the occurrence of the
composite event, otherwise we discard it.

Notice that, in principle, choosing the threshold above
may seem a very critical step for a correct identification of
relevant events, but in practice we found this not being the
case. Indeed, while IGR may assume values between 0 and
1, in all the tests we performed (see Section 4), we found that
there is a large gap between the IGR of relevant event types
and that of events that are not relevant. As a consequence of
this behavior, choosing a small threshold of 0.01 the Events
and Attributes Encoder hardly ever makes any identifica-
tion mistakes.

Inference of Attribute Values. In the description above,
we assumed only the type of occurred events to be relevant.
In many cases, however, also the values of attributes play an
important role. As an example, the presence of smoke may
be enough to suggest the occurrence of fire, but a temper-
ature reading is not enough per-se. In case of temperature
notifications we need to consider also the actual tempera-
ture measured (i.e., the value carried by the primitive event
Temp) to decide if there is fire or not.

To take event attributes into consideration they have to be
mapped into machine learning variables, and this mapping
may assume several forms. We may aggregate the values of
all events of the same type that are part of the window, for
instance considering the average temperature in the window
or the maximum and minimum values; or we may consider
the values carried by specific events, like the last tempera-
ture reported in the window. Current version of iCEP sup-
ports some of these mappings and we plan to add more in
the future.

In principle, the choice of the right mapping to use could
be left to domain experts, but we may also let iCEP de-
cide alone. Indeed, what it happens in practice is that after
mapping values of event attributes into variables of prob-
lem instances, iCEP applies the same strategy used to find
relevant event types, this time with the goal of determining



which attribute (or aggregate of attribute values) is more
relevant. So it looks at the IGR of variables to find those
that are relevant. Using this approach iCEP could easily
discover that both the average temperature in the time win-
dow and the last value reported are relevant, while the first
value reported is not.

3.2.2 Window Learner

The Window Learner operates in a way similar to the
Events and Attributes Learner but this time it may as-
sume the set S of relevant event types and attributes to be
known, while it has to infer the best size of window win. In
particular, we encode multiple machine learning problems,
each time considering a different size of window win, we
compute the amount of information carried by variables in
S when considering each window win as:

[win = Z [GRS

seS
and we select the window win that maximizes lyin, i.e.,

win = argmax luin
win

In theory, this is a complex and time consuming approach
since the number of possible window size to tests is virtually
infinite. In practice, we observed that the function I,in
rapidly increases around win and does not usually present
local maxima. This suggests to implement a binary search
approach, which adopt a finer granularity when moving close
to the point of interest.

Finally, we already observed the presence of a mutual de-
pendency between the Types and Attributes Learner and
the Window Learmer. In absence of external hints that could
come from domain experts, we address this dependency by
using an iterative approach, which allows to solve the two
learning problems at the same time. In particular, for every
window win considered, we use the Types and Attributes
Learner to determine the set S of variables v such that IGR,
overcomes a certain threshold, then we use this set to calcu-
late Iin through the Window Learner, and we repeat this
cycle changing win until the value win that maximizes Lyin
is found, together with the final set S of relevant variables
associated with win.

3.3 Predicates Learner

In previous section we have seen how the Events and At-
tributes Learner infers which events and which attributes
are worth considering. To come to this results, for each at-
tribute of each event type, it defines one or more machine
learning variables that encode such attribute (e.g., encod-
ing the average and the maximum value of the attribute in
the window) and it decides if these variables are relevant for
discriminating between positive and negative instances.

The Predicates Learner starts from this result to in-
fer the selection predicates that must appear in the pat-
tern of primitive events we are looking for. In particular,
for each attribute a identified as relevant, the Predicates
Learner takes all the machine learning variables that models
a, as found by the Events and Attributes Learner, and it
builds a decision tree using the C 4.5 algorithm described
in [38]. An example of decision tree for an attribute a mod-
eled by a single variable v, is presented in Figure 3 inter-
mediate nodes include the value to test (v, in our example),

(va> 10 and vy s 12) or (va>20)

Figure 3: Predicates Learner: an Example

edges include the test condition, while leaf nodes include
the value of the classification label, i.e., the occurrence of
the composite event.

Starting from this decision tree, we build a predicate as
follow. For each yes leaf, we traverse the tree up to the root,
and we merge the constraints on each traversed edge, thus
building a filter (i.e., a conjunct of predicates). For example,
in Figure 3, the leftmost yes node produces the filter (v, >
10 and v, < 12). The overall predicate is generated by the
disjunction of such filters, each coming from a different leaf.

Finally, notice that by separately considering the impact
of each attribute, we may reduce the precision of the derived
results. However, this enables us to produce a single (and
often compact) predicate for each attribute. On the con-
trary, building a single decision tree that considers all the
relevant attributes would result in complex predicates in-
volving constraints on multiple attributes, which could not
be easily expressed by a single CEP rule. Section 4 will
investigate this aspect in more detail, showing that our ap-
proach can accurately learn the expected predicates under
various scenarios.

3.4 Negations Learner

With the learning steps described so far we infer which
primitive events and which attribute values are “relevant”
for the detection of a composite event. Indeed, this is what
the IGR measures: the relevance of a given variable to dis-
criminate between positive and negative instances. What
IGR does not tell us is whether the variable is associated
with positive instances or negative ones, i.e., weather the
presence of the corresponding events and attributes must
suggest the presence of the composite event or its absence.

The same is true for attribute values. For instance, the
same decision tree in Figure 3 could result from a set of
positive instances in which (10 < v < 12 or v, > 20) or
from a set of negative instances such that (ve < 10 or 12 <
va < 20 or v, > 20).

The Negations Learner discriminates between these two
cases by inferring the presence of negations inside rules. It
takes the lookup window win, the set of relevant primi-
tive events, and the predicates associated with relevant at-
tributes, as input. For each relevant event e characterized
by a predicate p, it counts the number of positive instances
that contain e (within win) and satisfy p and compares this
number with the total number of positive instances. Intu-
itively, if this ratio is low we can deduce that e is relevant
for the composite event (the IGR is known to be high) but



Generate evaluation history
of primitive events

Generate training history of
primitive events

]

Detect all composite events
in training history

Split training history in
positive and negative traces

Execute iCEP
to infer Rule R*

v

Compare rules syntactically |4—

¥

Detect all composite events in Detect all composite events in
evaluation history using R* evaluation history using R

] I

Compare rules to determine
recall and precision

| Generate Rule R

Figure 4: Workflow of Evaluation

it is not relevant for the composite event to happen, so it
must be relevant for the composite event not to happen, i.e.,
it must appear as a negated event. Accordingly, we defined
a threshold for the ratio above, when the measured ratio is
below this threshold the event e must be negated. Our ex-
periments show that a threshold of 0.9 works best in most
situations.

3.5 Sequences Learner

The Sequence Learner is responsible for detecting the
(temporal) ordering constraints that hold among primitive
events. It implements an algorithm that is similar to the one
described for the Negations Learmner: it counts how many
times the relevant events identified in the previous steps ap-
pear in a specific sequence within positive instances.

More specifically, for each couple of relevant primitive
events e and ¢, taken with the associated predicates p and
p’, the Sequences Learner takes the positive instances in
which both p and p’ are satisfied and counts the number of
those instances in which e precedes €’ (at least once) and the
number in which e’ precedes e (at least once). If the first
number is significantly higher then the second, we infer that
the temporal relation e — €’ exists; if the second number
if significantly higher than the first, we infer the opposite
relation ¢/ — e; finally, if the two numbers are similar we
infer that no ordering relation exist.

4. PRELIMINARY RESULTS AND VALIDA-
TION

This section presents some preliminary results we got us-
ing the iCEP framework, and discusses the main benefits it
may bring, but also the current limitations and open issues
that affect it.

4.1 Experiment Setup

As we mentioned from the very beginning, iCEP was de-
signed as a decision support tool for the experts in charge of
writing CEP rules. For this reason, in our evaluation we con-
sider two kinds of measures: (@) we want to quantitatively
determine the ability of an automatically generated rule to
correctly identify composite events; (b) we aim at evaluating
how valuable are the indications provided by iCEP.

Figure 4 shows the workflow we followed in our evaluation,

which directly stems from these two goals. In absence of
large scale case studies coming from real applications of CEP
technology (which is often kept private by companies), and
to better explore the parameters that can influence the be-
havior of iCEP, we generate primitive and composite events
synthetically. More precisely, we randomly generate a train-
ing history of primitive events, then we define an oracle rule
R, which we assume to perfectly represent the domain of
interest, and we use R to detect all composite events in the
training history. Afterwards, the training history (including
primitive and composite events) is split to generate an (al-
most equal) number of positive and negative traces of events,
as we defined them in the previous sections. These traces
are the input of iCEP, which uses them to infer a rule Rx.

To quantitatively measure the performance of iCEP—following

goal (a) above—, we generate a new evaluation history of
primitive events, and we use both R and R* to detect com-
posite events over it. This allows us to measure the recall
of our algorithm, which is the fraction of composite events
captured by R that have been also captured by Rx; and the
precision, which is the fraction of composite events captured
by Rx* that actually occurred, i.e., that were also captured
by R.

At this point, we are also interested in evaluating subjec-
tively how capable is iCEP at determining “correct” rules
—along the lines of goal (b) above—. To do so, we compare
rules R and Rx syntactically, to determine in which aspects
they differ. We define 5 metrics for measuring the “distance”
between rules R and Rx:

e Type: measures the number of primitive event types
that appear in R but not in Rx*, plus the number of
types that appear in R but not in R;

e Win: measures the difference between the time win-
dow in R and that in Rx;

e Pred: for each attribute part of a predicate, either
in R or in R#, it measures the size of the intervals of
values that the predicates in R and R* have in common
w.r.t. the entire intervals mentioned by either of the
two predicates;

e Seq: measures the number of ordering constraints that
appear in one of the two rules but not in the other.
In doing so we consider the transitive closure of the
ordering relationship;

e Neg: measures the number of negations that appear in
one of the two rules but not in the other.

Notice that these metrics represent a distance between the
correct rule R and the inferred rule Rx, i.e., they represent
an error in the inference process. A value of 0 represents the
absence of errors.

Several parameters influence the generation of the training
and evaluation histories, and of rule R. For a broad evalua-
tion of this parameter space, we defined a default scenario,
whose parameters are listed in Table 1, and we investigated
the impact of each parameter separately.

In our default scenario we consider 25 different kinds of
primitive events, each one having the same frequency of oc-
currence. Each primitive event contains a single attribute
having a numeric (integer) value between 0 and 100. Rule R
contains 1 sequence of three primitive events each separate



Number of event types 25

Distribution of type Uniform

Number of attributes per event 1

Number of values per attribute 100

Number of constraints per event 1

Constraints operators distribution | =(20%),>(40%),<(40%)
Number of composite events 1000

Number of sequences 1

Length of sequences 3

Average window size 10

Number of negations 0

Table 1: Parameters in the Default Scenario

by a maximum of 5 time units (with a total window size
of 10 units). Each primitive event is selected according to
a predicate that contains one constraint. Both the training
and evaluation history include one primitive event for every
time unit, on average. The length of both histories is such to
give rise to 1000 composite events. From the training history
we derive 1000 positive traces and 1000 negative ones.

We repeated all the experiments 10 times, using different
seeds to generate random values. For each experiment, we
plot the average of the recall and precision we calculate and
the 95% confidence interval.

4.2 Default Scenario

[ Recall | Precision || Type [ Win | Pred | Seq [ Neg |
[099 | 094 || 01 | 36 [ 003 02 00 |

Table 2: Results of the Default Scenario

Table 2 shows the results we obtained in our default sce-
nario. First of all, the recall is very close to 1, meaning
that the rules generated by iCEP are capable of capturing
almost all the composite events that occur in the evaluation
history. The precision is also high and close to 0.95, mean-
ing that the number of composite events detected are only
5% more than the composite events that actually occur. An
impressive result.

For a more precise analysis of these results, we can look at
the syntactic differences between Rule R to infer and Rule
R+ generated by iCEP. First, we notice that iCEP very ac-
curately captures the event types and predicates relevant
for the composite event. Indeed, the average type distance
is 0.1 over the 3 event types that are part of Rule R, which
results in an percent error of 3.3%. Similarly, the average
difference in predicates coverage is 0.03, meaning that the
overall predicates detection error is only 3% (there are 100
different values for each attribute, see Table 1). Moreover,
iCEP correctly detects the timing constraints (sequences)
in almost all the tests we performed, and it always detects
the absence of negations. The main difference between R
and Rx is in the size of the window, with R* overestimating
it in all the tests we performed. The fact that events and
attribute values are selected randomly increases the impact
of overestimating the window size, which results in a (rela-
tively) large number of false positives. In real applications,
where primitive events do not happen randomly but follow
a pattern related with the subsequent happening of com-
posite events, we expect this error in estimating the size of
windows to have a lower impact on precision. With refer-
ence to the example introduced in Section 2, where fire oc-
curs when high temperature and smoke are detected within
5 minutes, increasing the size of the window should not trig-

ger a significant number of false fire detection; indeed, if we
consider the values of temperature, they are not randomly
distributed, but follow precise trends, with high values be-
ing exceptional and driven by specific phenomena, like the
presence of fire. The same is true for the presence of smoke.
Despite we consider iCEP as an offline tool, whose results
should be used to deploy new rules into a CEP engine, we
decided to measure the time it requires to process our train-
ing history to have an idea of the cost of the algorithm we
propose. Using our reference hardware (a Core i7-3615QM
@2.3GHz with 8GB of Ram) iCEP processes our training
history (i.e., 1000 positive and 1000 negative event traces)
in less than 5 min. Our experiments show that this time in-
creases linearly with the size of windows and with the num-
ber of traces considered: even the most complex tests we will
present in the remainder of this section required less than
30 min to run. Finally, we measured a maximum memory
consumption of less than 1GB. These numbers allow us to
conclude that neither the processing time nor the memory
consumption constitute a limit for the adoption of iCEP.

4.3 Number of Primitive Events
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No Sequence
Type | Win | Pred | Seq | Neg

1 0.0 2.0 0.0 0.0 0.0
2 0.1 5.2 0.06 0.1 0.0
3 0.1 4.0 0.04 0.1 0.0
4 0.0 10.2 0.08 0.1 0.0
5 0.1 6.0 0.05 0.1 0.0

Table 3: Number of Primitive Events Involved

In this section we investigate how the number of primitive
events in Rule R impacts the behavior of iCEP. We consider
two separate scenarios: in the first one, primitive events
are expected to happen one after another, in a single, long
sequence, to give rise to the composite event we are looking
for; in the second one, we do not require any special ordering
among the primitive events, for the composite one to occur.

Figure 5 shows the precision and recall of iCEP in these
two scenarios. In both cases, the recall only slightly de-
creases, moving from 1.00 (when considering only 1 prim-
itive event) to 0.98 (when considering 5 primitive events).
This means that Rule R* captured by iCEP is capable of
detecting almost all composite events that happens, even



when they result from complex patterns of multiple primi-
tive events.

Precision is also very good for the “no sequence” case,
when it remains close to 1.00 independently on the number
of primitive events in R (see Figure 5(b)).

Precision is worse when primitive events are organized in a
specific sequence (see Figure 5(a)). At a first sight this may
appear strange: indeed, by looking at Table 5, we observe
that the main source of error of iCEP is represented by an
overestimation of the window length and the resulting error
should be bigger in absence of additional constraints (i.e.,
with no sequence). The phenomenon can be explained by
observing that Rule R to be inferred suppose each event
in the sequence being separated by at most 5 time units,
i.e., it imposes a timing constraint for every sub-sequence of
two events. On the contrary, iCEP produces a rule R+ that
considers only a single time window in which all the events
must occur (with no additional timing constraints among
them apart from happening in order). As such, Rule Rx is
much less restrictive than the original one, detecting much
more composite events and thus lowering the precision.

Despite this difference, we notice (see Table 3, top) how
the window detected by iCEP is very close to the overall
window defined in R. Moreover, the difference between the
two decreases with the length of the sequence.

4.4 Window Size
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Figure 6: Window Size

Type | Win | Pred | Seq | Neg
10 0.0 4.1 0.05 0.0 0.0
20 0.0 5.5 0.06 0.0 0.0

30 0.0 0.3 0.06 0.0 0.0
40 0.1 0.2 0.05 0.2 0.0
50 0.0 0.5 0.08 0.0 0.0
60 0.0 2.2 0.05 0.2 0.0
70 0.0 2.1 0.06 0.0 0.0

Table 4: Window Size

In this section we study the impact of the size of windows
on the performance of iCEP, while keeping a single sequence
with a fixed number of 3 primitive events in Rule R. The
trends we observe for recall and precision (see Figure 6) are
very similar to the ones in the previous section, when con-
sidering a single sequence of increasing length. Also in this
case the recall is not significantly affected by the window
size (moving from 0.99 to 0.94) while the precision decreases
(from 0.94 to 0.78).

Again, the main difference between original Rule R and
inferred Rule R+ is precisely in the size of window. However,
this difference does not increase with the window size. Fi-
nally, it is worth mentioning that during this experiment we

observed that sometimes rule Rx underestimated the actual
window size.

4.5 Number of Types
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Figure 7: Number of Types

Table 5: Number of Types

In this section, we investigate how the number of primitive
event types part of the training history influences the results
produced by iCEP. With a random distribution of types
and values, having a lower number of event types results in
having a higher probability that one of the types relevant for
the composite event (i.e., one of the types in R) appears in
a given time window. Accordingly, a lower number of types
results in a higher noise, which may negatively impact the
precision of iCEP.

As we can see in Figure 7, this noise only marginally im-
pacts the average recall of iCEP. We observe, however, some
fluctuations when considering a very small number of types
(less then 10), which also result in larger confidence inter-
vals. The impact on the precision is more visible: with 4
and 7 types we have a (relatively low) precision of 0.7 and
0.8, respectively.

By looking at Table 5, we notice that this result is mainly
due to the errors in detecting types, predicates, and tem-
poral constraints (sequences). Albeit being relatively small,
this errors have a large impact in precision due to the low
number of total types present in the training and evaluation
histories.

4.6 Number of Composite Events

The number of composite events in the training history
(i.e., the number of training traces) is a crucial parameter
for a learning algorithm like iCEP. At the same time, thisis a
parameter worth investigating, since in some real situations,
composite events be very rare (e.g., in emergency scenarios).

By looking at Figure 8, we observe how a very small num-
ber of composite events —and, consequently, a very small
number of traces for training iCEP— results in poor recall
and precision.

After 100 composite events the average recall and preci-
sion measured are above 0.8. However, different repetitions
of the test show very different results. This results in large
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Figure 8: Number of Composite Events in Training
History

10 2.6 4.8 0.13 0.9 0.0
40 2.0 8.1 0.07 0.4 0.0
70 1.2 5.6 0.10 0.8 0.0
100 0.9 2.4 0.08 0.0
200 0.7 3.9 0.06 0.0

1000 0.1 3.6 0.03 0.2 0.0
3000 0.0 3.6 0.07 0.0 0.0

Table 6: Number of Composite Events in Training
History

confidence intervals, but also in notable syntactical differ-
ences between Rule R and Rx (see Table 6): for example,
iCEP makes some errors in identifying the type of primitive
events involved in R and the sequences being there.

Starting from 700 composite events or more, iCEP pro-
vides good and stable results, with a recall close to 1 and a
precision constantly above 0.9.

4.7 Presence of Negated Events

[ Recall | Precision [[ Type | Win | Pred | Seq [ Neg |
[089 | 082 | 01 | 64 | 005 ] 01 ] 09 |

Table 7: Results in Presence of Negated Events

In this section, we study how negated events in Rule R
impact the performance of iCEP. In particular, we modify
the default Rule R to include a sequence of two primitive
events, while a third primitive event must not appear within
the window for the composite event to happen (this is a
“negated” event). By looking at Table 7, we immediately
observe how iCEP introduces relevant errors in the detection
of negations: in 10 runs, the negation is correctly identified
only once, leading to a value of 0.9 for the Neg metric.

This impacts the value of precision (0.82 versus 0.94 in
the default scenario). Indeed, inferred Rule Rx* detects a
composite event even in presence of the negated primitive
event. Moreover, the presence of negation also introduces a
larger number of missing detection, with the recall moving
from 0.99 of the default scenario to 0.89.

The main error iCEP makes is not considering the negated
event as a relevant one: iCEP totally ignores it. We claim
that the main problem here is in the way we select nega-
tive training traces, i.e., traces in which the composite event
does not occur. Without any knowledge of the domain, we
select them randomly. This results in a very limited number

of traces in which the missing occurrence of the composite
event is actually caused by the presence of the negated event.
To confirm this hypothesis, we performed some additional
tests providing more domain information to iCEP. In par-
ticular, if we instruct iCEP to consider the negated event as
relevant for the rule (adding this information to the output
of the Events and Attributes Learner), we observe how
the remaining modules operate at best, correctly capturing
all aspects of Rule R. Most importantly, with this additional
information the Negations Learner always correctly infers
that the added event must appear in a negation.

4.8 Discussion

In this section, we presented some preliminary results to
validate our approach and its current implementation in the
iCEP framework. In almost all the tests we performed, iCEP
demonstrated very high recall and precision, even when con-
sidering long sequences and large time windows. Notice that
we did not rely on any external information provided by do-
main experts: all the aspects of Rule R were automatically
inferred.

During our tests we observed the importance of the num-
ber and quality of the traces used to train the system. With
a small number of random traces (see Figure 8) iCEP ex-
hibits low precision and recall: however, for our default sce-
nario, 700 traces (albeit randomly chosen) were sufficient to
obtain recall and precision above 0.9. Similarly, the quality
of results decreases when we introduce more noise. We ob-
served this phenomenon when reducing the number of prim-
itive event types (see Figure 7). Along this line, a significant
issue is related to the actual selection of traces. We observed
this problem when considering negations: a completely ran-
dom selection of negative traces leads to a poor precision. A
partial knowledge of the domain is required to select traces
that maximize the information required by iCEP.

Beside measuring recall and precision, we also analyzed
the rules inferred by iCEP syntactically. We observed a
very accurate prediction of event types and predicates, and
a good detection of timing constraints. The main source
of error was represented by an over-estimation of the time
window, which, however, has a limited impact on precision
in almost all the tests we performed.

S. RELATED WORK

This section revises related work. First, we present exist-
ing CEP systems, with particular emphasis on the languages
they adopt to define rules. This aims at showing the applica-
bility of iCEP. Second, we present existing machine learning
techniques for (temporal) pattern inference and discuss how
they can complement iCEP.

5.1 Complex Event Processing

The last few years have seen an increasing interest in tech-
nology for event and stream processing, and several systems
have been proposed both from the academia and from the
industry [32, 22].

Despite all existing solutions have been designed to accom-
plish the same goal, i.e., to process large volumes of flowing
data on-the-fly, they present different data models and rule
definition languages, as well as processing algorithms and
system architectures [16].

As we already mentioned in Section 2, and following the
analysis in [16], we can roughly identify two main classes of



systems. On the one hand, the database community gave
birth to Data Stream Management Systems (DSMSs) [9] to
process generic information streams. On the other hand,
the community working on event-based systems focused on
a form of data —event notifications— with a very specific se-
mantics, in which the time (of occurrence) plays a central
role [34].

Data Stream Management Systems. DSMSs usually
rely on languages derived from SQL, which specify how in-
coming data have to be transformed, i.e., selected, joined to-

gether, and modified, to produce one or more output streams.

Processing happens in three steps [7]: first, Stream-to-Rela-
tion (or windows) operators are used to select a portion of a
stream and to implicitly create traditional database tables.
The actual computation occurs on these tables, using Rela-
tion-to- Relation —mostly standard SQL— operators. Finally,
Relation-to-Stream operators generate new streams from ta-
bles, after data manipulation. Despite several extensions
have been proposed [21, 42, 35], they all rely on the general
processing schema described above.

Complex Event Processing Systems. At the opposite
side of the spectrum, Complex Event Processing system are
explicitly designed to capture composite events (or situa-
tions of interests) from primitive ones [22]. They interpret
messages flowing into the system as notifications of events
occurred in the observed world at a specific time. Rules de-
fine how composite events result from (patterns of) primitive
ones.

iCEP mainly targets this class of systems, with the aim
of inferring the causality relations between the presence of
primitive events and the occurrence of a composite one.
Nevertheless, most of the results we presented can be ap-
plied to both classes of systems.

Complex Event Processing systems often trade simplicity
and performance for expressiveness, providing a reduced set
of operators: for example, some languages force sequences to
capture only adjacent events [11]; negations are rarely sup-
ported [31, 11] or they cannot be expressed through timing
constraints [3]. Our long term goal in the development of
iCEP is to exploit all the operators offered in the most ex-
pressive rule definition languages, thus enabling the derived
rules to capture causal relationships present in the observed
environment as precisely as possible.

Generality of iCEP. Different kinds of languages for CEP
have been proposed, ranging from extensions of regular ex-
pressions [31, 11], to logic languages [6, 14, 15], and declar-
ative languages [2, 41]. Despite their differences, by looking
at existing CEP systems [16], we identified 5 main classes of
operators, namely selections, conjunctions, sequences, win-
dows, and negations.

Selection filters primitive events based on their content.
As described in the previous sections, iCEP currently sup-
ports selection of both string and numeric attributes. We
described and evaluated this aspect focusing on events with
a single attribute. We plan to extensively study the pre-
cision and performance when generalizing to multiple at-
tributes per event, using machine learning techniques for
multi-dimentional variables, as described in Section 5.2.

Conjunction makes it possible to consider multiple events
(e.g., the co-occurrence of two events A and B within a
time window). It often include constraints on the content

of attributes that can be combined together, known as pa-
rameters (e.g., A and B must have the same value for the
x attribute). As described in Section 4, we are working on
integrating new algorithms in iCEP to infer generic param-
eters.

Among conjunctions, aggregates play a central role. They
enable to compute a function over a set of values (e.g., com-
pute the average of all the values for the last 100 tempera-
ture events). As we described in Section 3, iCEP supports
aggregates as part of the Events and Attributes Learner
and Predicates Learner components, by explicitly encod-
ing the value of each aggregation function of interest as an
explicit Weka variable.

Another aspect related with conjunction is represented
by the selection and consumption policies [14, 13]. They
respectively provide answers to the following questions: in
presence of multiple events satisfying all the constraints ex-
pressed for the combination, which one(s) should the sys-
tem select? Which of the primitive events that led to the
detection of a composite one are still valid for further de-
tections (and which are, instead, consumed)? As discussed
in Section 3, iCEP already evaluates multiple selection poli-
cies when it specifies the set of variables to use for encoding
traces into machine learning instances. We plan to further
explore these aspects in the next releases.

iCEP supports time windows, negations, and sequences.
With respect to sequences, it is important to mention that
some CEP systems adopt an interval-based, as opposed to
point-based, time semantics: time is modeled using two
timestamps that indicate the interval in which an event is
considered valid [1]. We plan to explore the application of
iCEP to this time model in the future.

Finally, some systems define iteration operators (Kleene+ [25])

to capture a priori unbounded sequences of events. This is
typically exploited to detect trends (e.g., constantly increas-
ing value of temperature). While currently not integrated
in iCEP, several proposals for trend detection exist. We
describe them in Section 5.2, showing how they can comple-
ment the ideas in iCEP.

Related Concepts. Other concepts have been explored in
the field of Complex Event Processing that are strictly re-
lated with the idea of automatically deriving rules. Proac-
tive event processing [20] aims at predicting the occurrence
of future events, thus enabling actions that can mitigate or
eliminate undesired situations.

Connected to proactive processing is the idea of comput-
ing the degree of uncertainty (often modeled as probability)
associated to composite events. The first model proposed
for dealing with uncertainty in CEP is described in [44], and
extended in [45, 46], where the authors introduce a gen-
eral framework for CEP in presence of uncertainty. Simi-
lar approaches have been studied in [39] and [19]. Finally,
a tutorial on event processing under uncertainty has been
presented in the DEBS (Distributed Event Based Systems)
2012 conference [8].

As a future work we plan to explore these models to un-
derstand if and how they can be combined with iCEP, to
offer some indication about the confidence one can put on
the derived rules and on the real occurrence of the composite
events they detect.

Finally, it is important to notice that the goal of identify-
ing composite events of interest given elementary inputs is



also targeted by other approaches alternative to CEP such
as neural networks [5]. However, differently from CEP these
competing approaches are typically black-box solutions. In-
deed, CEP rules are white-box and easily modifiable from
domain experts that can check their correctness, update
or even maintain them over time as soon as the domain
changes. In addition, CEP is often exploited for its efficiency
(compared, e.g., to neural networks), being able to process
on-the-fly large volumes of input events against thousands of
rules. For these reasons, in certain scenarios, CEP is prefer-
able with respect to other competing approaches, even when
such alternative solutions are more expressive and capable
of capturing extremely complex situations (e.g., neural net-
works for face detection problems).

5.2 Machine Learning

To the best of our knowledge, iCEP represents the first at-
tempt to adopt machine learning techniques for automated
or semi-automated learning of CEP rules from historical
traces.

Nevertheless, analysis, mining, and knowledge discovery
from time-annotated data has been extensively studied in
the past. The interested reader can refer to [40, 30] for
an extensive description and classification of the solution
proposed.

By following the classification presented in [40], we can or-
ganize existing solutions for temporal data mining according
to two main parameters: the object under analysis, and the
mining paradigm. The object under analysis can be a single
value that changes over time, or a set of events that occur
in time. The paradigm can be a-priori where the mining
algorithm searches for patterns that match a user-defined
template, or classification, where the mining algorithm clus-
ters time sequences with similar characteristics.

The techniques adopted in iCEP are close to the discov-
ery of event patterns through a classification paradigm [33,
36]. However, in this area, most algorithms adopt unsu-
pervised learning techniques to detect frequent patterns or
to cluster existing examples. On the contrary, iCEP guides
the learning process by knowing in which points in time the
composite event occurs. Moreover, existing solutions lack
the expressiveness of iCEP, which is designed to automat-
ically discover multiple parameters, including the length of
a sequence, the relevant events and their values, the size of
the time window, and the presence of negation.

Moreover, we plan to use use machine learning techniques
for multi-dimensional variables to support events with mul-
tiple attributes. Such techniques are considered one of the
most important future trends in data mining [29], and sev-
eral algorithms have already been proposed [24].

Finally, we foresee the possibility to combine iCEP with
algorithms for detecting trends in values. In many applica-
tion fields, primitive events are produced by periodic read-
ings of a certain value, e.g., the price of a stock, or the
temperature read by a sensor. In these cases, the occur-
rence of a primitive event e might be meaningless, while it
can be relevant to detect the presence of a specific trend
in the value of e, e.g., a constantly increasing or decreasing
value. Several algorithms have been proposed to detect such
trends, both starting from a given template of the trend [10,
27, 4], and without any a-priori indication of the trends to
be detected [47, 17].

We plan to embed these algorithms in iCEP by encoding

the existence of a detected trend as a special variable of our
machine learning problem.

6. CONCLUSIONS

In this paper, we addressed the problem of automated
rule generation for Complex Event Processing systems. We
claim that the definition of rules that precisely capture the
cause-effect relationships between primitive and composite
events represents a complex task, even for domain experts.
A tool that guides and supports users in the definition of
rules can concur in extending the adoption of CEP systems.

We precisely defined the problem and proposed a general
approach for solving it. Moreover, we presented iCEP, a
prototype framework that infers rules from traces of past
primitive and composite event occurrences. Our approach
is highly modular, enabling domain experts to adopt only a
subset of components, based on the specific parts of the rule
they want to infer.

An evaluation of iCEP in a wide range of scenarios has
demonstrated the benefits of our approach, in terms of re-
call, precision, and inference of rule shape and parameters.
We are currently working in extending iCEP to support ad-
ditional features present in some expressive CEP language,
including event selection policies and parameterization.
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