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ABSTRACT

Complex Event Processing (CEP) systems aim at process-
ing large flows of events to discover situations of interest. In
CEP, the processing takes place according to user-defined
rules, which specify the (causal) relations between the ob-
served events and the phenomena to be detected. We claim
that the complexity of writing such rules is a limiting factor
for the diffusion of CEP. In this paper, we tackle this prob-
lem by introducing iCEP, a novel framework that learns,
from historical traces, the hidden causality between the re-
ceived events and the situations to detect, and uses them
to automatically generate CEP rules. The paper introduces
three main contributions. It provides a precise definition
for the problem of automated CEP rules generation. It di-
cusses a general approach to this research challenge that
builds on three fundamental pillars: decomposition into sub-
problems, modularity of solutions, and ad-hoc learning al-
gorithms. It provides a concrete implementation of this ap-
proach, the iCEP framework, and evaluates its precision in a
broad range of situations, using both synthetic benchmarks
and real traces from a traffic monitoring scenario.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Rule-based
databases; 1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

Complex Event Processing (CEP) systems analyze large
flows of primitive events received from a monitored envi-
ronment to timely detect situations of interest, or compos-
ite events. In CEP, the processing takes place according to
user-defined rules, which specify the relations between the
observed events and the phenomena to be detected [19].
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CEP can be applied to several domains: sensor networks
for environmental monitoring [13]; payment analysis for
fraud detection [46]; financial applications for trend discov-
ery [20]; RFID-based inventory management for anomaly
detection [51]. More in general, as observed in [33], the
information system of every company could and should be
organized around an event-based core that acts as a nervous
system to guide and control the other sub-systems.

While researchers and practitioners working on CEP fo-
cused mainly towards processing efficiency (achieving re-
markable results) [12, 2, 17, 18], widespread adoption of
CEP technologies depends on a correct and precise modeling
of the application domain under analysis using CEP rules.
Surprisingly, this aspect has received little attention so far
and users are left alone in the hard task of rule definition.

To explain the reason of this difficulty, let us refer to the
concrete case of vehicular traffic analysis. Rules must de-
scribe the causal relations between observations (e.g., the
number of cars on a given road, the average speed on a
given path) and the situation that must be detected (e.g.,
traffic congestion). A wide range of factors contribute in
defining these causal relations: the events recently received,
the information they carry, and their specific order. In many
cases, these factors are partially or completely unknown.

To overcome this limitation and wield all the potential
hidden in CEP, we need a set of techniques to support users
in rule definition. More specifically, we have to identify the
conceptual foundations and the key algorithms that allow
to learn, using available historical information, those CEP
rules that appropriately express the relevant causal relations
of a given domain.

This is exactly the goal of this paper, which contributes
to the research on CEP in three ways. First, it provides a
precise but general definition of the problem of automated
generation of CEP rules, concretely referring to the oper-
ators of CEP languages as illustrated in [19]. Second, it
discusses a general approach to this research challenge that
builds on three fundamental pillars: decomposition into sub-
problems, modularity of solutions, and ad-hoc learning al-
gorithms. Finally, it provides a concrete implementation of
this approach: the iCEP framework.

iCEP analyzes historical traces and learns from them. It
adopts a highly modular design, with different components
considering different aspects of the rule, such that users may
decide, based on their knowledge of the domain, which mod-
ules to adopt and which hints to provide to guide the learn-
ing process and increase its precision. We evaluate iCEP in a



broad range of situations, using both synthetic benchmarks
and real traces from a traffic monitoring scenario.

The rest of the paper is organized as follows. Section 2
introduces the event and rule models we adopt. Section 3
defines the problem of CEP rules learning, decomposes it
into subproblems, and proposes a general approach to cope
with it. Section 4 provides the details of the design and im-
plementation of the iCEP framework. Section 5 evaluates
iCEP using a number of synthetic and real traces. It high-
lights the accuracy of the framework and discusses potential
limitations and improvements. Finally, Section 6 surveys re-
lated work and Section 7 provides some conclusive remarks.

2. BACKGROUND

Over the last few years, CEP received increasing attention
as a mainstream approach for real-time monitoring and sit-
uation detection. By learning and generating rules for CEP
we aim at exploiting the results that the research on CEP
technologies produced so far: low latency processing of in-
formation, scalability in the volume of input events, in the
number of event sources, and in the number of rules [17].

Despite the differences in the various CEP engines and
rule languages both academia and industry proposed so far,
it is possible to identify an abstract event model and a rel-
atively small number of abstract operators that cover the
functionalities of most of these systems [19]. In the next
paragraphs, we introduce these event model and operators.

2.1 Event Model

We assume that each event notification is characterized
by a type and a set of attributes. The event type defines
the number, order, names, and types of the attributes that
build the event itself. We also assume that events occur
instantaneously. Accordingly, each notification includes a
timestamp, which represents the time of occurrence of the
event it encodes. As an example, the following notification:

Temp@10 (room=123, value=24.5)

captures the fact that the air temperature measured inside
room 123 at time 10 was 24.5°C.

2.2 CEP Operators

In most CEP languages, a composite event CE is defined
using a pattern of primitive events. When such a pattern is
identified the CEP engine derives that CE has occurred and
notifies the interested components. For instance, composite
event Fire could be derived from the presence of smoke and
high temperature. When notifications about smoke and high
temperature reach the engine it generates a Fire event. To
describe patterns of events, CEP languages rely on some
basic building block, or operators. In this paper we consider
the most relevant ones, as envisaged in [19]:

- Selection filters relevant event notifications according
to the values of their attributes.

- Conjunction combines event notifications together.

- Parameterization introduces constraints involving the
values carried by different event notifications.

- Sequence introduces ordering relations among events.
- Window defines the maximum timeframe of a pattern.

- Aggregation introduces constraints involving some ag-
gregated value.

- Negation prescribes the absence of certain events.

We are aware that specific CEP languages may implement
additional operators or variations of those discussed above.
Nevertheless, by focusing on the operators that are avail-
able on most CEP languages, our approach provides users
with generic, ready to use rules. If necessary, these rules can
be manually tuned to exploit system-specific features (e.g.,
customizable selection and consumption policies [19]) or ad-
ditional, not yet supported operators. The interested reader
may refer to Section 6 for a more detailed analysis of CEP
languages and systems.

For improved readability, here and in the remainder of the
paper we use an ad-hoc, simple and intuitive syntax for event
patterns, which supports the seven operators above. The
patterns that follow exemplify this syntax by introducing a
few possible definitions for a Fire composite event.

Pattern P1
within 5min { Smoke(area=$a) and Temp(area=$a and value>50) }

Pattern P2
within 5min { Smoke() and Temp(value>50) and Wind(speed>20) }
where { Temp->Smoke, Wind->Smoke }

Pattern P3
within 5min { Smoke() and Avg(Temp.value)>50 and not Rain(mm>2) }
where { Temp->Smoke }

Pattern P1 uses the selection operator to accept only Temp
notifications whose value exceeds 50; it introduces a window
of 5 minutes to find both Smoke and Temp (conjunction);
finally, it imposes a common value for the area attribute
in Smoke and Temp (using the parameter $a). Pattern P2
shows how the sequence operator can be used to state that
both Temp and Wind must precede Smoke. Finally, Pattern
P3 shows an aggregate constraint, imposing that the average
value of all observed temperatures must be greater than 50;
moreover, it introduces a negation, stating that Rain must
not be detected within the window of observation.

3. ON AUTOMATED RULE GENERATION

This section defines our problem in details and discusses
the approach we propose for dealing with it.

3.1 Problem Statement

The problem of automated rule generation involves learn-
ing the causal relations between primitive and composite
events using historical traces. We distinguish between posi-
tive traces, in which the composite event occurs, and nega-
tive traces, in which the composite event does not occur.

More formally, the problem can be stated as follows.
Given a set of event traces ©, and a composite event CE
such that, for each event trace € € O, either CE is the last
event in € (i.e., € is a positive trace) or it is missing from e
(i.e., € is a negative trace), automated rule generation aims
at deriving the pattern of primitive events whose occurrence
leads to CE. As an example, from the three traces below:
AGD, A@5, B@10, C@15, CE@L5

A@0, AQ7, A@10, Cei5
A@0O, B@5, B@27, C@30, CE@30

one could infer that CE occurs when:
within 5s { B() and C() }
where {B->C}

This is clearly a fictional example. In practice, captur-
ing the many factors that contribute to the occurrence of a
composite event requires a very large number of traces.



3.2 The Proposed Approach

To tackle the problem of automated rule generation, we
propose an approach that builds on three fundamental pil-
lars: decomposition into sub-problems, modularity of the
solution, and ad-hoc learning algorithms.

We observe that the problem of automated rule generation
can be decomposed into several learning sub-problems, each
one considering a different aspect of the rule to discover. In
particular, starting from the abstract CEP operators intro-
duced in Section 2, we identified seven sub-problems: (i) de-
termine the relevant timeframe to consider, i.e., the window
size; (4i) identify the relevant event types and attributes;
determine the (1) selection and (4v) parameter constraints;
(v) discover ordering constraints, i.e., sequences; identify
(vi) aggregate and (vii) negation constraints.

We claim that a clear decomposition into sub-problems
should not remain at the logical level only, but should drive
the design and implementation of a concrete solution, with
each sub-problem addressed by a different module. Indeed,
a clear separation among these modules (see Section 4.1 and
Figure 1) enables them to operate independently from each
other, possibly using different strategies and technologies
for their implementation. Moreover, it allows for ad-hoc,
customized algorithms that address domain specific require-
ments. Some modules can be even guided or entirely sub-
stituted by human experts. Finally, an approach based on
independent modules eases the extensibility to other CEP
operators that may be introduced in the future.

Starting from this conceptual model, we designed, built,
and evaluated different concrete tools for automated rule
generation. Our first implementation heavily relied on su-
pervised machine learning [36]. However, these traditional
techniques shown some limitations in encoding the operators
mentioned above. For example, expressing relations between
attributes (i.e., encoding parameter constraints) was impos-
sible without significantly hampering performance. To over-
come these problems, we designed a novel algorithm based
on a key intuition we describe in the next section.

3.3 Toward a New Learning Strategy for Au-
tomated Rule Generation

To solve the automated rule generation problem we can
start from a relatively simple consideration: both a CEP
rule 7 and an event trace ¢ can be associated to a set of con-
straints. These are the constraints defined by the rule and
satisfied by the trace, respectively. As an example, consider
rule r1 characterized by the pattern:

within 5s { A() and BQO) }

Intuitively, it defines the set of constraints S, 1

- A: an event of type A must occur;

- B: an event of type B must occur;

Similarly, the event trace £1:A@0,B02,C@3 satisfies the set
of constraints S, :

- A: an event of type A must occur;

- B: an event of type B must occur;

- C: an event of type C must occur;

!For the sake of readability, this section considers only con-
straints on the presence and order of primitive events.

- A—B: the event of type A must occur before that of type B;
- A—C: the event of type A must occur before that of type C;
- B—C: the event of type B must occur before that of type C;

By looking at rules and traces from this viewpoint, we can
assert that for each rule r and event trace ¢, r fires if and
only if S, C S..

Given these premises, the problem of learning an unknown
rule 7 boils down to detecting the set of constraints S, it
includes. In this setting, given a positive trace &, Sc can be
considered as an overconstraining approximation of S,. In
the example above, S¢, includes all the constraints defined
by rule 71 (A, B) as well as four additional constraints that
are not required to satisfy r1 (C, A—B, A—C, B—C).

To prune these additional constraints, we can look at the
set of positive traces collectively. In particular, we can in-
tersect the sets of constraints satisfied by each and every
positive trace. For example, let us assume that an addi-
tional positive trace e2:A@0,B@3,D@4 exists, which defines
the following set of constraints Se,:

- A: an event of type A must occur;
- B: an event of type B must occur;
- D: an event of type D must occur;
- A—B: the event of type A must occur before that of type B;
- A—D: the event of type A must occur before that of type D;
- B—D: the event of type B must occur before that of type D;

By intersecting S, with S.,, we obtain a more precise ap-
proximation of Sy, , which only includes the following three
constraints: A, B, A—B. Although this approximation still
contains an extra constraint (i.e., A—B), it shows the general
idea behind our intuition: intersecting the constraints satis-
fied by positive traces enables to (at least partially) prune
the additional constraints not included in the set of con-
straints defined by the rule, S;, in our example.

Even if this general idea is conceptually simple, its con-
crete application presents several challenges when it comes
to effectively and efficiently support the CEP operators de-
scribed in Section 2. Among these challenges, omitted in
the example above, we have to learn the size of the window
and consider the presence of negations, aggregates, and pa-
rameters. Next section shows how we detailed, tuned, and
reified this approach into the iCEP framework.

4. THE iCEP RULE LEARNING SYSTEM

This section presents iCEP. Section 4.1 discusses the high
level architecture of the tool, while Section 4.2 explores each
component of this architecture in depth.

4.1 The iCEP Architecture

The problem decomposition described in Section 3.2 di-
rectly reflects on the architecture of iCEP, which consists of
seven distinct modules, as shown in Figure 1:

- Events and Attributes (Ev) Learner: finds which
event types and attributes are relevant for the rule;

- Window (Win) Learnmer: finds the minimal time inter-
val that includes all relevant events;

- Constraints (Constr) Learner: finds the con-
straints that select relevant events based on the values
of their attributes;
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Figure 1: The High-Level Architecture of iCEP

- Parameters (Param) Learner: finds the parameters
that bind the value of attributes in different events;

- Sequences (Seq) Learmer: finds the ordering rela-
tions that hold among primitive events;

- Aggregates (Agg) Learner: identifies the presence
and values of aggregate constraints;

- Negations (Neg) Learmer: finds negation contraints;

As shown in Figure 1, each module takes the set of pos-
itive traces available and uses them to determine a specific
aspect of the rule to learn. In particular, each module is
in charge of learning a specific kind of constraints, leverag-
ing the intuition given in Section 3.3. For instance, the Ev
Learner looks for the event types and attributes that are
relevant for the rule, while the Constr Learner finds the
constraints on attribute values. Differently from the other
modules, the Neg Learner, being in charge of learning the
events that must not occur, also considers negative traces.

Modules operate in cascade as shown by the partially or-
dered chain depicted in Figure 1. In particular, some mod-
ules may proceed in parallel, while others require the results
of the previous ones to operate. It is important to notice that
the first two modules (the Win Learner and Ev Learner) re-
quire each other’s output to perform their computation (this
mutual dependency is indicated by the two arrows that join
them in Figure 1). In absence of user-provided informa-
tion that solves this circular dependency iCEP executes the
two modules iteratively to learn both the window, the event
types, and the relevant attributes for the rule to learn. This
iterative process is explained in detail later on in this section.

Organizing modules in cascade provides an additional
benefit. Each processing step removes elements from the
traces, thus simplifying and speeding up the computation
performed in the following steps. As an example, if the Ev
Learner determines that only the events of types A or B are
relevant for the rule to learn, it can simplify the traces by re-
moving all events with a different type before passing them
to the Constr Learner.

The modular architecture of iCEP concretely realizes the
design pillars discussed in Section 3, by delegating sub-
problems to specific software components. This enables
iCEP users to select and adopt only a subset of the modules
mentioned above to integrate their (partial) knowledge of
the domain. For instance, if the set of relevant events and
attributes is known, it can be explicitly provided to the two
modules Constr Learner and Win Learner, thus eliminat-
ing the need for the Ev Learner.

As a concluding remark, notice that no module (except for
the Neg Learner) exploits the information contained in neg-
ative traces. All of them implement and refine the concep-
tual idea of intersecting constraints from all positive traces

as described in Section 3.3. While developing iCEP, we tried
to improve the performance it provides by also adopting
negative traces to discard unrequired constraints, as usually
done in traditional machine learning approaches. However,
this proved to greatly increase the processing time without
yielding significant improvements to the learned rules.

4.2 iCEP Modules Explained

Ev Learner. The role of the Ev Learner is to determine
which primitive event types are required for the composite
event to occur. It considers the size of the window as an
optional input parameter. Let us first consider the simple
case in which the window size win is indeed provided, e.g.
by domain experts (the more general case in which the size
of window is unknown will be covered in the next section).
Under this assumption, the Ev Learner can discard events
occurred outside the scope of the window. More precisely,
it can cut each positive trace such that it ends with the
occurrence Occ of the composite event to detect and starts
win time instants before Occ.

For each positive trace, the Ev Learner simply extracts
the set of event types it contains. Then, according to the
general intuition described in Section 3.3, it computes and
outputs the intersection of all these sets.

Finally, the Ev Learner is also responsible for discarding
the attributes defined in each event type that are not rele-
vant for the composite event. Indeed, in some application
scenarios, it may be possible that event notifications specify
a value only for a subset of the attributes defined in their
types (leaving others empty). Detecting relevant attributes
is conceptually identical to detecting relevant types: the Ev
Learner simply looks at the set of attributes that are defined
at least once in every positive trace.

Win Learner. The Win Learner is responsible for learning
the size of the window that includes all primitive events
relevant for firing a composite event CE.

Let us first assume for simplicity that the set of relevant
primitive event types (and attributes) S, is known. In this
case, the Win Learner analyzes past occurrences of CE and
selects the minimum window win such that, for every oc-
currence Occ of CE, all elements in S, are contained in a
timeframe ending with Occ and having size equal to win.

However, as we already observed, it is possible that both
the window size and the set S, are unknown. This results in
the mutual dependency between the Ev Learner and the Win
Learner shown in Figure 1. In absence of external hints from
domain experts, we address this dependency by using an
iterative approach, which solves the two learning problems
at once. In particular, we progressively increase the window
size and, for each considered size ws, we execute the Ev
Learner assuming such a window ws as the correct one. In



0 20 40 60 80 100 120 140 160 180 200
Window Size

Number of Event Types
)

Figure 2: Executing the Win Learner. Size of S-
with different window size. Positive traces gener-
ated from a rule requiring three specific event types
to appear in a window od size 20.

doing so, we notice that initially the size of S; monotonically
increases with ws (as more events enter the window, more
event types are detected as relevant), but this behaviour
has an end. At a certain point this growth stops and the
size of S, stabilizes in a plateau. In practice, this happens
when w, reaches the value of the window to learn. This
behaviour is exemplified in Figure 2, which shows the size
of S during a concrete execution of the Ev Learner with a
growing window size in a situation where the rule to learn
requires three specific event types to appear in a window
of size 20. As anticipated, we notice how the size of S,
shows a plateau when ws reaches a value of 20. With this
window size, S, contains exactly the three primitive event
types required by the rule.

Starting from this consideration, the algorithm imple-
mented in the Win Learner works as follows: it iteratively
invokes the Ev Learner with a growing window size and se-
lects the first plateau having a size greater than a value p,
which is provided as a parameter; the resulting window size
is the starting point of such a plateau (20 in our example).

Constr Learner. With reference to the general architecture
in Figure 1, the Constr Learner receives in input the posi-
tive traces after they have been filtered by the Win Learner
and Ev Learner. The former resized traces based on the
learned window size, while the latter removed irrelevant
event types. The goal of the Constr Learner is to learn the
set of constraints that select the relevant primitive events
based on the value of their attributes.

Based on our experience, the Constr Learner is a criti-
cal component of iCEP since it deals with a learning sub-
problem characterized by a large solution space. Indeed,
depending on the specific application as well as on the sit-
uation to detect, the Constr Learner should be capable of
learning different classes of constraints.

The most elementary case is represented by equality con-
straints, which impose an equality between the value of an
attribute a and a constant c. Detecting equality constraints
involves detecting which constant values are associated to an
attribute a in all positive traces. This can be easily imple-
mented following the core principle described in Section 3.3,
i.e., by extracting the set of values for a from all positive
traces and computing their intersection.

In addition to equality, for numerical attributes iCEP sup-
ports constraints involving inequality relations (i.e., >, <,
#). As an example, let us consider the following constraint
for an event T that predicates on attribute a: a > 0. Intu-
itively, inequality constraints cannot be inferred by simply
intersecting samples in positive traces. More specifically,
learning these constraints involves two tasks: finding the
specific relation to use (e.g., < or >) and extracting the

value of the constants (e.g., 0 in our previous example). Let
us consider the following positive traces:

T(a=0)
T(a=2)
T(a=9)

First of all, iCEP looks for equality constraints, by inter-
secting the values of attribute a in the three positive traces.
By doing this, iCEP deduces that no equality constraints
exist for a. As a second step, iCEP looks for inequality
constraints. Without any additional knowledge, iCEP ex-
tracts the minimum m and maximum M values for the at-
tribute a in all the traces, and builds a constraint in the
form m < a < M. Referring to the example above, iCEP
would produce a 0 < a < 9.

To improve the precision of this result, iCEP may exploit
hints provided by domain experts. For example, they can
suggest the kind of relation to be learned (> in our example).
This hint overwrites the default behavior of iCEP, which in
our example would produces the correct constraint a > 0.

In the previous example we focused on constraints pred-
icating on a single attribute. iCEP supports the general
case of constraints involving multiple event attributes (e.g.,
a > 10 and b < 20): in this case we rely on existing
techniques, i.e., Support Vector Machines [15], to learn the
constraints that better describe the portions of the (multi-
dimensional) attribute space observed in positive traces.

Agg Learner. As shown in Figure 1, the Agg Learner runs
in parallel with the Constr Learner. The two components
have many similarities, since they both are responsible for
learning constraints on the content of events. However, dif-
ferently from the Constr Learner, the Agg Learner does
not consider the values carried by individual events. Instead,
it considers the values computed by aggregation functions
over all the events of a certaint type.

The Agg Learner we implemented natively supports the
learning of the following aggregation functions: sum, count,
minimum, maximum, and average. It is possible, for
example, to learn constraints having the following form:
Avg(Temp.value)>50, which demands the average value
computed over all the events of type Temp to be greater
than 50. To increase the customization and the adaptation
of iCEP to different application domains, we also support
user-defined aggregation functions.

After computing the values of aggregates in all positive
traces, the Agg Learner implements the same algorithm
already described for the Constr Learner. In particular,
it first extracts possible aggregate constraints involving an
equality relation; if it does not find any of them, it considers
constraints involving inequality relations.

Param Learner. The Param Learner receives in input the
positive traces after all events that do not match the con-
tent constraints identified by the Constr Learner have been
removed. Its goal is to extract the parameter constraints
among the remaining events. Recalling the definition in Sec-
tion 2.2, parameters predicate on the relations between the
value of attributes belonging to different events. iCEP sup-
ports equality as well as, in the case of numerical values,
inequality relations.

Following the general principle of intersection among con-
straints that underpins iCEP, the Param Learner operates
in two conceptual steps. (i) First, it considers each positive
trace ¢ in isolation and extracts all possible relations among



the attribute of different events appearing in €. Consider for
example the following trace e1:

A@10(x=1, y=10), B@12(z=1), C@15(w=1)

The Param Learner extracts the following relations among
attributes: A.x = B.z, A.x = C.w, B.z = C.w, A.y > B.z,
A.y > C.w. (i) Second, the Param Learner considers all
positive traces together, and computes the intersection of
the extracted relations among attributes.

Seq Learner. The Seq Learner works in parallel with re-
spect to the Param Learner and receives the same input
from the previous modules. It produces the set of ordering
constraints, or sequences, that has to be satisfied to trigger
the occurrence of a composite event. Once again, it imple-
ments the intersection approach described in Section 3.3.
(i) First, it considers each trace in isolation and extracts
all the ordering constraints among the events appearing in
it. As an example, consider again the trace 1 illustrated in
the previous section. It includes three sequence constraints:
A—B, B—C, A—C. (i7) Second, the Seq Learner intersects all
the sequence constraints extracted from individual traces,
keeping only those that appear in all traces.

Neg Learner. As shown in Figure 1, the Neg Learner,
differently from the other modules, also considers negative
traces. Indeed, this module is in charge of finding primitive
events that must not appear in a trace to trigger the occur-
rence of a composite event. To do so, the Neg Learner takes
as input the set C' of all the constraints generated by the
other modules in previous steps. Then, it selects the nega-
tive traces that satisfy all the constraints in C. In absence
of negations, all the traces satisfying the constraints in C
should be positive traces, by definition. The fact that the
selected traces are negative implies that they contain some
additional primitive event e,, that prevented the occurrence
of the composite event. In other words, e, represents the
negated event that iCEP needs to learn.

To identify the type and content of e,, the Neg Learner
applies the same algorithms adopted by the Ev Learner and
the Constr Learner to the selected negative traces. In par-
ticular, it first looks for common event types appearing in all
the selected traces, and then extracts the constraints that
predicate on their content. The results produced by this are
appended to the learned rule as negation constraints.

S. EVALUATION

This section evalutates the accuracy of iCEP in a number
of different scenarios, based both on synthetic benchmarks
and on real datasets. To enable the replicability of all the
results discussed in this section, iCEP is publicly available?.

5.1 Synthetic Benchmarks

To thoroughly explore the parameters that can influence
the behavior of iCEP, we designed and implemented a frame-
work for synthetic benchmarking, which generates events
and rules based on a number of controllable parameters.
Figure 3 shows the workflow of our synthetic benchmarking
framework. First, it randomly generates a training history of
primitive events. Then, it defines an oracle rule R, which we

%iCEP is written in Java. The source code, the
datasets used in our experiments, and the documen-
tation to replicate the experiments are available at
http://www.inf.usi.ch/postdoc/margara/software/iCEP.zip

Number of event types 25
Distribution of type Uniform
Number of attributes per event 3
Number of possible values for attributes 100
Number of constraints per event 3
Distr. of op. for select. constraints = (20%)
> (40%)
< (40%)
Number of positive traces 1000
Number of primitive events in R 3
Average window size in R 10s
Number of parameters in R 0
Number of sequence constraints in R 0
Number of aggregates in R 0
Number of negations in R 0
Distance between primitive events 1s

Table 1: Parameters in the Default Scenario

0.0817 (0.0099)
0.9419 (0.0168)

Recall (95% confidence interval)
Precision (95% confidence interval)

Table 2: Results of the Default Scenario

assume to perfectly represent the domain of interest. Next,
the benchmarking framework uses R to detect all the com-
posite events in the training history, splitting the training
history into a set of positive and negative traces. Finally, it
invokes iCEP to analyze positive and negative traces from
the training history and learn a rule R*.

To quantitatively measure the performance of iCEP, the
benchmarking framework generates an evaluation history of
primitive events and uses both R and R* to detect com-
posite events over it. This allows us to measure the recall
of our algorithms, which is the fraction of composite events
captured by R that have been also captured by R*; and the
precision, which is the fraction of composite events captured
by R* that actually occurred, i.e., that were also captured
by R. Notice that the benchmarking framework stores both
rule R and rule R* for each experiment it executes. This en-
abled us to study the syntactic differences between the two
rules and to isolate the errors introduced by the different
learning modules.

Experiment Setup. Several parameters influence the gener-
ation of: the rule R, the training history, and the evaluation
history. For a broad analysis of this space, we defined a de-
fault scenario, whose parameters are listed in Table 1, and
we investigated the impact of each parameter separately.
Our default scenario considers 25 types of primitive events
T1...T25, each with the same frequency of occurrence. Each
primitive event contains three attributes, each one holding
an integer value between 0 and 100. Rule R has the following
form:

within 10 s { T1(cl and c2 and c3) and
T2(c4 and c5 and c6) and
T3(c7 and c8 and c9) }

where c1,... c9 are elementary constraints on attribute
values. In our default scenario, rule R does not include
parameters, aggregates, sequences, or negations. Both the
training and the evaluation histories include one primitive
event per second, on average, which fire 1000 composite
events (i.e., positive traces). All our experiments have been
repeated ten times, using different seeds to generate random
values. For each experiment, we plot the average value of
recall and precision, and the 95% confidence interval.
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Figure 3: Workflow for Synthetic Benchmarking

Default Scenario. Table 2 shows the results we measured
in our default scenario. First of all, the recall is very close
to one, meaning that the rules generated by iCEP are capa-
ble of capturing almost all the composite events that occur
in the evaluation history. Also the precision is above 0.94,
meaning that the rule detects about 6% more events than
those actually occurred (false positives). A remarkable re-
sult. Moreover, the results are stable over multiple runs:
for both recall and precision the 95% confidence interval is
lower than 2% of the measured value.

By analyzing the differences between the oracle rule R and
the learned rule R*, we observed that iCEP always correctly
identifies the types and attributes of the primitive events in
R, as well as the window size. Moreover, iCEP correctly
identifies the absence of parameters, sequences, and nega-
tions. The only (limited) differences between R and R* are
represented by the constraints on the content of attributes,
as learned by the Constr Learner and Agg Learner. In par-
ticular, the Constr Learmer correctly identifies all equality
constraints, while it sometimes over or under estimates the
value in inequality constraints (i.e., constraints involving the
< or > operators). Similarly, the Agg Learner produces ag-
gregate constraints that are not present in rule R, typically
introducing a lower (upper) bound for the minimum (maxi-
mum) value of an attribute. As explained in Section 4.2, we
expect these imprecisions to be mitigated by the presence of
hints from domain experts.

Time and Memory Requirements. We consider iCEP as
an offline tool, whose results should be used to determine
the rules to be subsequently deployed into a CEP engine.
However, to provide an idea of the costs of the algorithms we
propose, we also report here the time required to analyze the
training history and determine rule R*. Using our reference
hardware (a Phenom II X6 1055T @2.8 GHz with 8 GB of
RAM), a complete run of our default scenario (including
the time to compute the recall and precision) requires less
than 35s to conclude. Our experiments show that this time
increases at most linearly with the number traces and with
the number of events appearing in each trace. Even the
most complex tests presented in the remainder of this section
required less than ten minutes to run. Finally, we measured
a maximum memory consumption of less than 1.5 GB. These
numbers allow us to conclude that neither the processing
time nor the memory consumption represent a limit for the
adoption of iCEP.

Number of Primitive Events. Figure 4 shows how the re-
sults produced by iCEP change with the number of primi-
tive events appearing in rule R. First of all, we measured
a constant recall, above 0.97, meaning that the learned rule
R correctly identifies almost all the composite events in
the evaluation history, independently from the number of
primitive events in R. On the other hand, we measure a

drop in precision when R includes only one or two primi-
tive events. Indeed, we observed that the Constr Learner
usually generates selection constraints that are less selective
(i.e., easier to satisfy) than those present in the oracle rule
R. This results in producing false positives, i.e., in gener-
ating more composite events than those actually occurring
in the evaluation history. As Figure 4 shows, the impact of
this evaluation error decreases with the number of primitive
events. Indeed, selecting a wrong event has fewer chances
to trigger a false occurrence when other events are required
by the rule.

Size of Window. Figure 5 shows how the size of the win-
dow in R impacts on the performance of iCEP. Also in this
case, the recall remains almost constant. Conversely, the
precision slightly decreases with the window’s size. This is
not a consequence of an error in learning the window size
itself. Indeed, the Win Learner always identifies the correct
size of window. On the other hand, a large window has a
negative impact on the EV Learner. This can be explained
by noticing that a large window w will include a large num-
ber of events, thus increasing the chances of finding events
in w that appear in all positive traces and become part of
the learned rule R* even if they are not part of R.

Number of Event Types. Figure 6 analyzes the recall and
precision of iCEP while changing the overall number of event
types appearing in the training and in the evaluation histo-
ries. Since types are uniformly distributed, the frequency
of occurrence of each type Ti decreases with their number.
Thus, as the number of different types decreases, it becomes
more and more difficult for iCEP (and in particular for the
Ev Learner) to discriminate between relevant and irrelevant
types for the rule R. This explains the behavior of Figure 6:
with a small number of types (less than five) we measure a
recall of 0.71. However, this value rapidly increases, up to
0.98, with seven or more types.

Number of Selection Constraints. This section analyzes
how the results of iCEP change when increasing the number
of selection constraints for each primitive event appearing
in R. As Figure 7 shows, the number of constrains has
virtually no impact on the recall. On the other hand, a small
number of constraints (less than three) negatively impacts
on the precision. We already observed a similar behavior in
Figure 4: when rule R becomes less selective the difficulty
of the Constr Learner in predicting the correct selection
constraints become more evident.

Number of Parameters. This section explores the accuracy
of the Param Learner in detecting parameter constraints.
As shown in Figure 8, introducing parameter constraints
does not introduce any visible impact on precision (con-
stantly above 0.94) and on recall (constantly above 0.96).

Number of Sequences. This section analyses the impact
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of sequence constraints on iCEP. To do so, we repeated the
experiment shown in Figure 4, by measuring the recall and
precision of iCEP while increasing the number of primitive
events involved in rule R. However, in this case we also intro-
duced sequence constraints, forcing all the primitive events
in R to appear in a precise and predefined order (i.e., in a
sequence). Figure 9 shows the results we measured: both
precision and recall are almost identical to those measured
in Figure 4 (without ordering constraints). iCEP, and in
particular the Seq Learner, was always capable to identify
sequence constraints correctly.

Number of Aggregates. This section explores the behavior
of iCEP in presence of aggregates. We considered five dif-
ferent aggregation functions: minimum, maximum, average,
count, and sum. Figure 10 shows the results we measured.
As in most previous experiments, the recall remains constant
and above 0.98. However, we register a drop in precision,
which moves from 0.94 (with no aggregate constraints) to
0.78 (with one aggregate constraint). This is due to an inac-
curate detection of aggregate constraints. In particular, in
presence of an aggregate constraint involving type Ti, the
Ev Learner always recognizes that Ti is required to fire the
occurrence of a composite event. In some cases, however,
the Agg Learner fails to recognize the presence of an aggre-
gate constraints involving Ti, or, more commonly, generates
an under-constraining aggregate. Nevertheless, precision re-
mains constant as the number of aggregates increases.

Presence of Negations. This section investigates the im-
pact of negations on the accuracy of iCEP. As in the case
of aggregates, we started from our default scenario and we
added one or more negation constraints, each of them predi-
cating over a different event type, and including three selec-
tion constraints. Figure 11 shows the results we measured.
When moving from zero to one negation constraint, we no-
tice that the precision remains almost constant, while the
recall decreases from 0.98 to 0.85. We already observed in
previous experiments that the selection constraints gener-
ated by iCEP are usually less selective than the ones in the
oracle rule R. This also occurs when estimating the selection
constraints for the negated event: iCEP correctly identifies
the type and attributes of the negation, but it generates se-
lection constraints that capture more events than required,
thus reducing the recall.
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More interesting is the behavior of iCEP in presence of
two negations. In this case, the presence of at least one
negated event is sufficient to prevent the firing of a composite
event. Because of this, the algorithm implemented in the Neg
Learner, which extracts common elements from all negative
traces, leads to a lower accuracy. Indeed, in presence of two
negated primitive event types, Tnl and Tn2, some negative
traces may include only Tn1, while others may include only
Tn2; thus, the intersection of all negative traces may yield to
an empty set. This is what happened in our experiment: the
Neg Learner fails to correctly identify negation constraints
when more than one event is negated. In such cases the
precision drops below 0.5. As a positive side effect, the recall
returns to 0.98. We further discuss this issue in Section 5.3.

Number of Traces. Finally, this section investigates how
the performance of iCEP changes with the number of posi-
tive traces available (i.e., composite events). This is a crucial
parameter for a learning algorithm. Moreover, in some real
situations, composite events can occur quite infrequently
(e.g., monitoring of an exceptional system’s behavior), and
collecting a large number of positive traces can be difficult.

As expected, by looking at Figure 12, we observe that a
very small number of positive traces (below 40) results in
poor recall and precision. In this situation, almost all the
modules of iCEP provide inaccurate results. However, 40
positive traces are already sufficient to overcome a value of
0.9 in both precision and recall. With 100 positive traces,
they both overcome 0.95. After this point, iCEP provides
stable results.

5.2 Traffic Monitoring Scenario

The use of synthetic benchmarks enabled us to extensively
investigate the accuracy of iCEP. To shed light on the con-
crete applicability of iCEP, we applied it to a real world
dataset including timestamped information about the po-
sition and status of buses in the city of Dublin®. We used
the dataset to generate primitive events about the traffic. In
particular, we defined a different event type for each bus line
(75 in total), where each type defines five attributes includ-
ing the bus number and the delay w.r.t. schedule, which are
all part of the dataset. Each bus approximately generates

Shttp://dublinked.com/datastore/datasets/
dataset-304.php
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an update every two seconds; thus, every minute contains
several events of the same type. This is a very challenging
scenario for iCEP, since even windows of limited size are
likely to include multiple occurrences for all event types.
To validate iCEP, we defined a rule R similar to the rule il-
lustrated in the default scenario. In particular, the rule fires
a composite event Alert whenever at least one bus from n
different (and pre-defined) lines has more than one minute
of delay. We evaluate the accuracy of iCEP by progressively
increasing the number of lines n involved in the rule. We
extracted from the dataset information concerning two dif-
ferent days of operation. We use the first day to train iCEP
and the second one to evaluate the precision and recall of the
learned rule R*. Figure 13 shows the results we measured.
We obtained a very high recall and precision, independently
from the number of event types (i.e., bus lines) appearing
in R. Nevertheless, if we look at the learned rule R*, we
observe some differences w.r.t. R, with the former often in-
cluding additional event types not contained in R. Indeed,
the high density of events made it difficult for iCEP to dis-
criminate between relevant and non-relevant event types.
On the other hand, this does not impact the ability of the
learned rule to detect all and only those composite events
that appear during the second day (the evaluation history).

5.3 Discussion

This section presented a detailed evaluation of iCEP. In
almost all our tests, we measured a high recall and preci-
sion, even when considering relatively large evaluation win-
dows and heterogeneous constraints including parameters,
sequences, and aggregates. Although iCEP may receive ex-
ternal hints to improve its accuracy, we never exploited this
feature: the learning process was completely automated.

During our tests, we observed the impact of the size and
quality of the training dataset. Precision and recall de-
creased with a (very) limited number of traces (see Fig-
ure 12). However, for our default scenario, 100 traces were
already enough to obtain a recall and precision above 0.95.
Similarly, the accuracy of results decreased in presence of
a small number of primitive event types (see Figure 6) or
with large windows (see Figure 5). Indeed, in both cases,
the evaluation window includes multiple events of each type,
which may bias the learning process.

From the observation above, we can derive a more gen-
eral conclusion concerning the characteristic of input data:
since iCEP starts filtering positive traces based on the event
types they include, it provides the best accuracy in all the
scenarios where each type encodes the occurrence of an ex-
ceptional fact. Conversely, as discussed in our case study of
traffic monitoring, when events in traces encode periodic up-
dates about the state of the environment, we observe some
differences between rule R and R*. Nevertheless, also in this
case, both precision and recall remain close to one.

Another important aspect that emerged from our analy-
sis is the crucial role of the Constr Learner. On the one
hand, almost all modules in iCEP rely on the knowledge of
selection constraints. On the other hand, detecting them
is very challenging since it requires to generate selection
criteria for events based only on available observed values.
As observed in different experiments, this complexity some-
times translates in results that are not fully accurate. We
believe that domain specific techniques and optimizations
could contribute to enhance the accuracy of the Constr
Learner. We plan to apply iCEP to specific scenarios (e.g.,
system security) to validate this hypotesis.

Finally, there are cases in which the general idea of inter-
secting constraints may generate less accurate results. We
experienced this limitation in the case of multiple negations,
where the firing of a rule can be prevented by the presence
of different negated events. Despite our previous investiga-
tions with alternative solutions (e.g., machine learning tech-
niques [36]) this remains an open issue that we plan to in-
vestigate further in future work.

6. RELATED WORK

This section revises related work. First, it presents ex-
isting CEP systems, with the purpose of showing the ap-
plicability of iCEP. Second, it introduces research efforts
in the CEP area that are related to rule learning. Finally,
it presents existing approaches that deal with the general
problem of extracting knowledge from data traces.

Stream and Event Processing Systems. The last few years
have seen an increasing interest in technology for stream and
event processing, and several systems have been proposed
both from the academia and from the industry [33, 24]. De-
spite all existing solutions have been designed to accomplish
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the same goal, i.e., to process large volumes of flowing data
on-the-fly, they present different data models and rule def-
inition languages, as well as processing algorithms and sys-
tem architectures. For example, several kinds of languages
have been proposed that range from extensions of regular
expressions [32, 12], to logic languages [5, 16, 17, 8], and
declarative languages [2, 46]. According to the analysis pre-
sented in [19] we can roughly identify two main classes of
systems. On the one hand, the database community gave
birth to Data Stream Management Systems (DSMSs) [10]
to process generic information streams. On the other hand,
the community working on event-based systems focused on
a form of data, event notifications, with a specific semantics,
in which the time (of occurrence) plays a central role [37].

DSMSs usually rely on languages derived from SQL, which
specify how incoming data have to be transformed, i.e., se-
lected, joined together, and modified, to produce one or
more output streams. Processing happens in three steps [6]:
first, Stream-to-Relation (or windows) operators are used to
select a portion of a stream and to implicitly create tradi-
tional database tables. The actual computation occurs on
these tables, using Relation-to-Relation (mostly SQL) oper-
ators. Finally, Relation-to-Stream operators generate new
streams from tables, after data manipulation. Despite sev-
eral extensions have been proposed [23, 49, 39], they all rely
on the general processing schema described above.

At the opposite side of the spectrum, CEP systems are
explicitly designed to capture composite events (or situa-
tions of interests) from patterns of primitive ones [24]. CEP
systems often trade simplicity and performance for expres-
siveness, providing a reduced set of operators: for exam-
ple, some languages force sequences to capture only adjacent
events [12]; negations are rarely supported [32, 12] or they
cannot be expressed through timing constraints [3]. iCEP
mainly targets this second class of systems, with the aim of
learning the causal relations between the presence of prim-
itive events and the occurrence of a composite one. Never-
theless, most of the results we presented can be applied to
both classes of systems. Our long term goal in the develop-
ment of iCEP is to exploit all the operators offered in the
most expressive rule definition languages, thus enabling the
derived rules to capture causal relationships present in the
observed environment as precisely as possible.

In this perspective, it is important to mention that some
CEP systems adopt an interval-based, as opposed to point-
based, time semantics: time is modeled using two times-
tamps that indicate the interval in which an event is con-
sidered valid [1]. In addition, some CEP systems define
iteration operators (Kleene+ [28]) to capture a priori un-
bounded sequences of events. This is typically exploited to
detect trends (e.g., constantly increasing value of tempera-
ture). Trend detection as well as the extension of iCEP to
interval-based semantics are part of our future work.
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Rule Learning and Related Efforts in CEP. Concerning
the specific problem of learning CEP rules we can mention
some relevant existing research efforts. For example, [38]
describes a rule learning approach based on an extension
of Hidden Markov models [42] called Noise Hidden Markov
models that can be trained with existing, low-level, event
data. This work precisely addresses the same research goal
of iCEP, however, it differs in several fundamental aspects.
For example, differently from iCEP, it only processes and
learns elementary events (i.e., attributes are not supported)
and does not provide the same level of expressiveness as
iCEP. Indeed, it does not support some operators commonly
offered in CEP languages (e.g., aggregates and parameters).

Worth to mention is also [50], which discusses an iterative
approach for automating both the initial definition of rules
and their update over time, combining partial information
provided by the domain experts with machine learning tech-
niques. This work differs from iCEP in two distinct aspects:
it explicitly requires the human intervention in its tuning
phase and it does not provide the same level of expressive-
ness as iCEP in terms of learned operators (e.g., negations
aggregates). Similarly, [47] discusses an iterative approach
to support the domain expert in designing new rules and
identifying missing ones.

Proactive event processing [22] is an additional research
goal strictly related to the idea of automated rule genera-
tion. It aims at predicting the occurrence of future events,
thus enabling actions that can mitigate or eliminate unde-
sired situations. Connected to proactive processing is the
idea of computing the degree of uncertainty (often modeled
as probability) associated to composite events. The first
model proposed for dealing with uncertainty in CEP is de-
scribed in [52], and extended in [53, 54], where the authors
introduce a general framework for CEP in presence of un-
certainty. Similar approaches have been studied in [44, 21,
43]. Worth to mention is [9], where the authors tackle the
issue of uncertainty in transportation systems and explore
a logic-based event reasoning tool to identify regions of un-
certainty within a stream. Finally, a tutorial on event pro-
cessing under uncertainty has been presented in the DEBS
(Distributed Event Based Systems) 2012 conference [7]. We
plan to explore these models to understand a potential inte-
gration with iCEP, to offer some indication about the confi-
dence one can put on the learned rules and their derivations.

Related Learning Approaches. The general problem of
knowledge learning and mining from (time-annotated) data
traces has been extensively studied in the past (e.g., [27]).
The interested reader can refer to [45, 31] for an extensive
description and classification of the solution proposed. The
techniques adopted in iCEP are close to the algorithms de-
scribed in [35, 40]. Worth to mention among them are the
approaches that adopt multi-dimensional variables to sup-



port events with multiple attributes. Such techniques are
considered one of the most important future trends in data
mining [30], and several algorithms have already been pro-
posed [26]. In contrast to the approaches mentioned above,
iCEP adopts a totally different viewpoint explicitly con-
ceived for CEP. Indeed, it solves the learning problem by
modelling rules and traces as set of constraints and system-
atically computing their intersections. Moreover, existing
solutions lack the expressiveness of iCEP, which is designed
to automatically discover multiple rule features.

As mentioned in Section 5, the algorithms currently imple-
mented in iCEP are not well suited to deal with application
fields in which primitive events are produced by periodic
readings of a certain value, e.g., the price of a stock, or the
temperature read by a sensor. Indeed, these settings often
require mechanisms to learn temporal trends. We plan to
integrate iICEP with trend detection mechanisms, such as
those described in [11, 55].

Several approaches have been proposed to construct tem-
poral rules in noisy environments. For example, [29]
adopts Markov logic networks to construct knowledge bases,
while [4] proposes a data mining algorithm for inducing tem-
poral constraint networks. Interestingly, [56] addresses the
problem of unusual event detection and discusses an ap-
proach based on a semi-supervised Hidden Markov Mod-
els combined with Bayesian theory. Finally, the problem of
learning rules from data traces has been also addressed in
various domains, such as medical applications [41, 14], de-
tection malicious intrusions in software systems [48, 34], and
mining frequent patterns in alarm logs [25].

7. CONCLUSIONS

In this paper, we addressed the problem of automated
rule generation for CEP systems. We precisely defined the
problem and proposed a general approach that builds on
three fundamental pillars: decomposition into sub-problems,
modularity of the solution, and ad-hoc learning algorithms.
Moreover, we presented iCEP, a concrete implementation
of our approach, which effectively trades off performance
and expressiveness. On the one hand, iCEP supports all
the operators commonly offered by the state of the art CEP
systems. On the other hand, it can analyze thousands of
traces in a few minutes. In addition, the highly modular ar-
chitecture of iCEP enables extensibility and customization.
An extensive evaluation of iCEP, based on synthetical as
well as real data, demonstrated its benefits in terms of re-
call and precision. As future work we plan to deploy iCEP in
real a real world application to further challenge its concrete
applicability and flexibility.

To conclude, while CEP systems have proved their ef-
fectiveness and efficiency in a wide range of scenarios, the
complexity of rule definition still represents a challenge that
received little attention. We hope that, by building on top of
our contribution, and by exploiting and refining our frame-
work, future research could simplify the use of CEP systems
and promote their adoption.
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