
Dynamic Data Flow Testing of
Object Oriented Systems

Giovanni Denaro†, Alessandro Margara⇤, Mauro Pezzè⇤† and Mattia Vivanti⇤
⇤Università della Svizzera italiana (USI), Lugano, Switzerland

Email: {alessandro.margara, mauro.pezze, mattia.vivanti}@usi.ch
†University of Milano Bicocca, Milano, Italy

Email: denaro@disco.unimib.it

Abstract—Data flow testing has recently attracted new interest
in the context of testing object oriented systems, since data flow
information is well suited to capture relations among the object
states, and can thus provide useful information for testing method
interactions. Unfortunately, classic data flow testing, which is
based on static analysis of the source code, fails to identify many
important data flow relations due to the dynamic nature of object
oriented systems. In this paper, we propose a new technique to
generate test cases for object oriented software. The technique
exploits useful inter-procedural data flow information extracted
dynamically from execution traces for object oriented systems.
The technique is designed to enhance an initial test suite with
test cases that exercise complex state based method interactions.
The experimental results indicate that dynamic data flow testing
can indeed generate test cases that exercise relevant behaviours
otherwise missed by both the original test suite and by test suites
that satisfy classic data flow criteria.

I. INTRODUCTION

Software testing is an important verification and validation
activity to reveal program failures. Test cases may be generated
by sampling the execution space either randomly or aiming at
specific objectives that derive from the expected behavior, the
program structure or some information about faults [1].

Data flow testing is a particular form of testing that identifies
data flow relations as test objectives [2]. Data flow testing
has been extensively studied since the early seventies with
ambivalent results. Some studies indicate that data flow infor-
mation is very useful for exercising corner cases [3], while
other studies do not acknowledge significant advantages of
data flow testing over simple branch coverage [4]. Recently,
data flow testing has attracted new interest in the context of
testing object oriented systems, since data flow information
can capture the relations among the object states particularly
well [5], [6], [7]. However, despite the current encouraging
results, there are no conclusive studies about the validity of
data flow testing in the context of object oriented systems yet.

In a recent work, we noticed that classic data flow testing,
based on static analysis of the source code, misses a lot of
important data flow information [8]. The data reported in [8]
indicate that static analysis can miss up to 96% of the data flow
information dynamically observed during program execution,
out of which over 60% of the missed information depends on
dynamic binding and polymorphic relations and another 10%
depends on the difficulty of managing complex data structures
like arrays.

In this paper, we present DynaFlow, a new approach to
generate test cases that exploits useful data flow information
that is difficult to compute on the source code. The approach is
not yet another data flow coverage metrics, but a constructive
way of identifying useful test objectives to generate new test
cases, and as such it is a good complement of existing test
case generation techniques.

Although DynaFlow works for general programs, we pro-
pose it for interprocedural testing of object oriented programs.
In fact, the object oriented paradigm encourages programs
that consist of stateful classes, whose state is defined as
dynamically allocated data structures that are accessed by
methods of dynamically bound objects. This high degree of
dynamism is the primary source of limitations of classic
data flow approaches that can be overcome with a dynamic
approach as the one proposed in this paper.

DynaFlow is based on a form of data flow analysis that
we refer to as dynamic data flow analysis, and that consists
of executing the program with one or more test cases and
computing data flow information on the resulting execution
traces. The collected information represents data flow relations
that derive from the interplay between the static structure of the
program and the dynamic evolution of the system, and thus
cannot be identified with classic data flow approaches. The
approach proposed in this paper exploits the dynamic data flow
information computed on an initial set of test cases to infer
new data flow relations and consequently new test objectives.

Being inferred on dynamically computed data, the new
data flow relations both include important information on the
execution state that cannot be captured statically, and suffer
less from the infeasibility problem than the data flow relations
computed with static analysis. We feed the new test objectives
into a test case generation tool to produce new test cases, and
iterate through the approach until we cannot identify new test
objectives to be exercised.

We evaluated the approach by estimating the ability of
revealing new faults, using the number of killed mutants
as proxy measure of the fault revealing capability [9]. Our
experimental results indicate that our approach can signifi-
cantly increase the number of killed mutants compared to the
starting test suite. This indicates that with our approach we
can increase the effectiveness of the available test suite by
addressing a larger set of potential faults. We also notice that

our approach kills more mutants than much larger test suites
computed randomly. This indicates that the increased number
of killed mutants does not depend on the mere increased size
of the test suite, but on the execution of corner cases difficult
to identify by simply executing more test cases.

This paper contributes to the state of art by (1) defining a
new data flow analysis approach that we refer to as dynamic
data flow analysis, and that identifies important information
that classic data flow approaches would miss, (2) introducing
an iterative approach to augment an existing test suite by
exploiting the data flow information computed dynamically
during the execution of the original test suite, (3) providing
an initial set of experimental results that indicate that the
new technique produces test cases that can reveal faults not
easily identifiable with other techniques, and (4) opening new
opportunities to exploit data flow information for increasing
the effectiveness of test suites.

This paper is organized as follows. Section II illustrates
with an example the limitations of using static data flow
analysis to infer data flow testing objectives, and motivates the
intuition behind the use of dynamic data flow analysis as in
the approach proposed in this paper. Section III describes our
novel approach for test case generation based on dynamic data
flow analysis. Section IV discusses the experimental results
that support the validity of the approach. Section V reviews the
main related work and indicates the differences with respect to
the approach proposed in this paper. Section VI summarizes
the results of this paper and points to open research questions.

II. MOTIVATING EXAMPLE

This section provides some examples to show that the struc-
ture of object oriented programs can hamper the effectiveness
of static analysis in identifying the data flow relations of
a program. Next, it introduces the intuition behind the use
of dynamic data flow analysis to identify useful data flow
information more effectively than with static analysis.

The most common data flow testing technique requires
executing def-use pairs. A def-use pair associates a definition
with a use, provided that there exists a def-clear path in-
between. A definition corresponds to a statement that changes
the value of a program variable. A use corresponds to a
statement that requires the value of a variable. A def-clear
path is a program path that traverses the definition and then
reaches the use of the same variable without changing the
value of the variable in-between. When applied to object
oriented programs, the def-use testing criterion captures the
(state-based) interactions between the methods that define and
use the state variables of the classes.

We refer to static data flow analysis both with and without
alias analysis to identify def-use pairs. Data flow analysis
without alias analysis (hereafter DFA1) trades completeness
for scalability, and is the technique commonly used in most
data flow testing approaches [2], [10], [11]. Data flow analysis
integrated with may-alias static analysis [12], [13] (hereafter
DFA2) computes a conservative over approximation of the
set of possible def-use pairs, possibly with awareness of

1 c l a s s L0 ex tends Leve l{
2 boolean v0 = f a l s e ;
3 Leve l sub = L e v e l F a c t o r y . makeLevel (1) ;
4 void doA (){
5 sub . doA () ;
6 v0 = t rue ;
7 }
8 boolean doB (){
9 boolean ok = t rue ;

10 i f (v0) ok = sub . doB () ;
11 a s s e r t ok ; / / Bug : t h i s a s s e r t i o n can f a i l !
12 re turn ok ;
13 }
14 }
15 c l a s s L1 ex tends Leve l{
16 boolean v1 = f a l s e ;
17 Leve l sub = L e v e l F a c t o r y . makeLevel (2) ;
18 void doA () {
19 i f (v1) sub . doA () ;
20 }
21 boolean doB () {
22 v1 = t rue ;
23 boolean r e t = sub . doB () ;
24 re turn r e t ;
25 }
26 }
27 c l a s s L2 ex tends Leve l{
28 boolean v2 = f a l s e ;
29 void doA () {
30 v2 = t rue ;
31 }
32 boolean doB () {
33 i f (v2) re turn f a l s e ;
34 re turn true ;
35 }
36 }
37 c l a s s L3 ex tends Leve l{
38 boolean v3 = f a l s e ;
39 Leve l sub = L e v e l F a c t o r y . makeLevel (4) ;
40 void doA () {
41 i f (v3) sub . doA () ;
42 v3 = sub . doB () ;
43 }
44 boolean doB () {
45 i f (v3) sub . doA () ;
46 v3 = sub . doB () ;
47 re turn true ;
48 }
49 }
50 a b s t r a c t c l a s s Leve l{
51 a b s t r a c t vo id doA () ;
52 a b s t r a c t boolean doB () ;
53 }
54 c l a s s L e v e l F a c t o r y{
55 s t a t i c Leve l makeLevel (i n t s e l e c t o r){
56 sw i t ch (s e l e c t o r){
57 case 0 : re turn new L0 () ;
58 case 1 : re turn new L1 () ;
59 case 2 : re turn new L2 () ;
60 case 3 : re turn new L3 () ;
61 / / ca se 4 , case 5 , . . .
62 d e f a u l t : re turn n u l l ;
63 }
64 }
65 }

Fig. 1: A sample Java program

polymorphism and dynamic binding. DFA2 produces accurate
results with increased, sometimes impractical, complexity.

Let us consider the (Java) object oriented program in Fig. 1.
The class under test L0 (line 1) includes the state variable
sub (line 3) of class L1 (line 15). Class L1 includes the
state variable sub (line 17) of class L2 (line 27). The class
L3 (line 37) is unrelated to the class L0. The class Lev-

el (line 50) defines the interface of the classes L0, L1, L2
and L3. The class LevelFactory (line 54) implements the
common design pattern factory: It returns new instances of the

TABLE I: A sample definitions and uses computed with DFA2 for the methods of class L0
Pair Variable [may-alias object type] Def at Through call chain Use at Through call chain
p1 L0.v0 6 L0.doA 10 L0.doB
p2 L0.sub[L1].v1 22 L0.doB!L1.doB 19 L0.doA!L1.doA
p3 L0.sub[L1].sub[L2].v2 30 L0.doA!L1.doA!L2.doA 33 L0.doB!L1.doB!L2.doB
p4 L0.sub[L1].sub[L3].v3 42 L0.doA!L1.doA!L3.doA 41 L0.doA!L1.doA!L3.doA
p5 L0.sub[L1].sub[L3].v3 42 L0.doA!L1.doA!L3.doA 45 L0.doB!L1.doB!L3.doB
p6 L0.sub[L1].sub[L3].v3 46 L0.doB!L1.doB!L3.doB 41 L0.doA!L1.doA!L3.doA
p7 L0.sub[L1].sub[L3].v3 46 L0.doB!L1.doB!L3.doB 45 L0.doB!L1.doB!L3.doB
p8 L0.sub[L1].sub[L3].sub[L2].v2 30 L0.doA!L1.doA!L3.doA!L2.doA 33 L0.doB!L1.doB!L3.doB!L2.doB
p9 L0.sub[L2].v2 30 L0.doA!L2.doA 33 L0.doB!L2.doB
p10 L0.sub[L3].v3 42 L0.doA!L3.doA 41 L0.doA!L3.doA
p11 L0.sub[L3].v3 42 L0.doA!L3.doA 45 L0.doB!L3.doB
p12 L0.sub[L3].v3 46 L0.doB!L3.doB 41 L0.doA!L3.doA
p13 L0.sub[L3].v3 46 L0.doB!L3.doB 45 L0.doB!L3.doB
p14 L0.sub[L3].sub[L1].v1 22 L0.doB!L3.doB!L1.doB 19 L0.doA!L3.doA!L1.doA
p15 L0.sub[L3].sub[L1].sub[L2].v2 30 L0.doA!L3.doA!L1.doA!L2.doA 33 L0.doB!L3.doB!L1.doB!L2.doB
p16 L0.sub[L3].sub[L2].v2 30 L0.doA!L3.doA!L2.doA 33 L0.doB!L3.doB!L2.doB
...

TABLE II: Definitions and uses dynamically revealed against
the execution of method sequences

Test sequence Observed
definitions

Observed
uses

Inferred
pairs⇤

Covered
pairs⇤

L0.doA(); L0.v0 L0.sub.v1
L0.doB(); L0.v0 p1
L0.doA();L0.doB(); L0.sub.v1 L0.sub.sub.v2 p2 p1
L0.doA();L0.doB();
L0.doA();

L0.sub.sub.v2 p3 p2

L0.doA();L0.doB();
L0.doA();L0.doB();

p3

⇤ def-use pairs identified as in Table I.

type Level by instantiating some of the subtypes according
to a selector value passed as parameter.

The analysis DFA1 produces poor insights on the behavior
of class L0. The only information obtained with DFA1 is that
method L0.doA() may define variable L0.v0 at line 6, and
method L0.doB() may use this variable at line 10. The def-
use criterion can be satisfied with a test suite that includes a
single test case that calls these two methods in sequence and
exercises their set-get behavior. Unfortunately, DFA1 does not
reveal the effects of the calls of methods sub.doA() (line 5)
and sub.doB() (line 10), because the static binding of these
methods through the variable sub of class Level does not
link to any concrete implementation of the methods.

The analysis DFA2 produces more accurate results than
DFA1 thanks to the integration with may-alias analysis. The
may-alias analysis infers the set of objects that may bind to the
variables used throughout the program. We refer to this set of
objects as the may-alias set of a variable at a program point.
For instance, the may-alias set of variable L0.sub used at the
call-point sub.doA() (line 5) consists of the objects instan-
tiated within the method LevelFactory.makeLevel()

at lines 57, 58, 59 and 60. For the program in Fig. 1,
all call points depend on the return values of the method
LevelFactory.makeLevel(). Therefore, all call points
share the same may-alias set.

The analysis DFA2 exploits the may-alias sets to compute
a larger and more complete set of def-use pairs than DFA1.
The results of DFA2 are partially listed in Table I. Each row
lists a def-use pair composed of an identifier (column Pair),
the variable name (column Variable), the line of code that

corresponds to the variable definition within the call chain
that may lead to the definition (column Def) and the line
of code that corresponds to the use within the corresponding
call chain (column Use). The variable name indicates also the
associations between class fields and objects according to the
may-alias sets. For example the pair p2 refers to the variable
L0.sub.v1 because the field L0.sub can be alias of an
object of type L1.

A test suite that covers the def-use pairs identified with
DFA2 outperforms the single test case that satisfies the cri-
terion according to def-use pairs computed with DFA1. In
fact, DFA2 augments the pair p1 identified with DFA1 with
new pairs that correspond to relevant object interactions. The
pairs p2 and p3 capture the effects of the calls of methods
sub.doA() (line 5) and sub.doB() (line 10) that are
missed by DFA1. In particular, when executing a test case that
covers p3, variable L0.sub.sub.v2 (line 30) is assigned
value true, and method L2.doB() returns false (line 33),
thus revealing the violation of the assertion at line 11.

DFA2 identifies many pairs, but only pairs p1, p2 and
p3 of Table I are feasible. All the other pairs listed in the
table and many others that are not listed there are infeasible.
They derive from alias relations that are inferred statically by
the conservative may alias analysis and that do not occur at
runtime. Thus, DFA2 produces important useful information
missed by DFA1, but also a lot of false positives that can cause
the divergence of the testing effort.

The example witnesses a well known phenomenon: the data
flow information computed without alias information misses
important test objectives, while an expensive conservative
analysis may hide useful information in a lot of false positives.

The technique proposed in this paper computes relevant
test objectives by relying on what we call dynamic data
flow analysis, and generates test cases that satisfy such goals.
Dynamic data flow analysis computes data flow information
on execution traces. In this way, it captures the aliasing
relations that manifest at runtime, thus both mitigating the
under approximation of DFA1 and avoiding the many false
positives that result from DFA2.

With reference to the example discussed in this section, Ta-
ble II reports the information computed with the dynamic anal-

ysis technique that we present later in the paper, as an example
of how dynamic data flow analysis produces important and ac-
curate information for generating test cases. Each row reports
the information gathered dynamically in one execution, that is:
the executed test sequence (column Test sequence), the defini-
tions and uses observed on the execution trace (columns Ob-
served definitions and Observed uses, respectively), the def-use
pairs that can be inferred based on the observed information
(column Inferred pairs) and the def-use pairs covered in the
execution (column Covered pairs). At each run, the technique
infers new pairs that become test objectives for the next runs.

In the first two runs, the test cases simply call the two
methods of class L0 in isolation, respectively. Executing
Lev0.doA() reveals the definition of variable L0.v1 and
the use of variable L0.sub.v1. Executing Lev0.doB()

reveals the use of variable L0.v0. While the information pro-
duced in the first run does not identify any pair, the additional
information from the second run allows us to infer the pair p1
(Table I). The next runs cover the inferred and not-yet-covered
pairs incrementally. The third test case covers pair p1, reveals a
new definition and a new use, and infers a new pair to be cov-
ered p2. The fourth test case covers p2, reveals a new definition
and infers the pair p3, which is covered by the last test case
reported in the table. Since the last test case does not reveal
new definitions or uses, the process terminates. We can see that
in this case the technique identifies all the feasible and impor-
tant data flow relations without false positives, and guides the
incremental generation of test cases to find the failure. The
experimental evaluation in Section IV confirms this results.

III. DYNAMIC DATA FLOW TESTING

This section presents DynaFlow, a new approach for exploit-
ing data flow information to generate test cases. DynaFlow
iteratively improves an original test suite with new test cases.
At each iteration DynaFlow (A) dynamically analyzes the
program executed with the current test suite to compute
dynamic data flow information, (B) statically combines the
data flow information to identify new test objectives, and
(C) generates new test cases that satisfy the new objectives.
The new test cases are added to the current test suite for the
new iteration. DynaFlow terminates when either step B does
not identify new test objectives or the execution budget is over.

Below, we describe these three steps in details. Section III-A
presents our dynamic data flow analysis, Section III-B focuses
on the static approach used to compute test objectives, and
Section III-C discusses the automated generation of test cases
from such goals.

A. Dynamic Data Flow Analysis

In the first step, DynaFlow computes data flow information
of the program under analysis. As suggested by the example
in Section II, dynamic data flow analysis can identify useful
information to exercise cases that may lead to subtle failures.

DynaFlow targets method interactions. Since methods inter-
act primarily through the class state, we focus on data flow
relations between the class state variables that comprise the

0 A a1 = new A();
1 A a2 = new A();
2 B b = new B();
3 a1.setB(b);
4 a2.setB(b);
5 Z z = new Z(a1);
6 z.doSmt();

 class Z{
 private A a;
 Z(A a){
 this.a=a;
 }
 void doSmt(){
 print(a.getB());
 }
 }

Classes Under Test Test Case t Memory Model

A
#01

A
#02

B
#03

b b

Z
#00

a

 class A{
 private B b;
 void setB(B b){
 this.b=b;
 }
 B getB(){
 return b;
 }
 }

 class B{
 }

Fig. 2: Example of memory model built by executing a test
case t. The model represents the internal state of the memory
after the execution of line 6 of test t.

class state. Object oriented programs define class states as sets
of class fields that may be of primitive or structured types. In
this latter case, the fields refer to objects that in turn include
other fields. DynaFlow represents the class state as a set of
class state variables: Each class state variable univocally iden-
tifies a chain of field signatures that characterizes a field that is
part of the class state at some nesting level. For example, class
Z in Fig. 2 includes a field a of type A, and class A contains a
field b of type B. Intuitively, the state of class Z includes the
field A.b nested in the object Z.a. DynaFlow expresses this
relation by saying that class Z has a state variable Z.a.b.

DynaFlow focuses on relations between class state variables
that depend on dynamic conditions, such as dynamic bindings
and aliases between (nested) class fields and objects created
at runtime, and that can be computed by means of dynamic
data flow analysis. DynaFlow relies on a proper extension of
DReaDs, a dynamic data flow analyzer we developed in our
lab [8]. DReaDs computes reaching definitions and reachable
uses of the class state variables dynamically on the program
traces. Next, we introduce DReaDs, focusing on the novel
extensions introduced in this paper. DReaDs is composed of
three main components: (1) a component that maintains a
memory model to map both memory-load and memory-store
events to the involved class state variables, (2) a component
that exploits the memory model to monitor the propagation of
definitions and the reachability of uses of the state variables
along the execution traces, (3) a component that merges the
reaching definitions and the reachable uses computed across
multiple traces to produce a final set of dynamically identified
data flow relations.
Memory model. DReaDs takes as input a program and a
related test suite, and executes all the test cases in the test
suite. While executing each test case, DReaDs intercepts all
the data flow events, that is, memory-load and memory-store
instructions, and creates a memory model that represents the
references between the objects active in memory. The memory
model is built and maintained at runtime, and serves to identify
the state variables that are affected by load and store events.

The memory model is a directed graph, where the nodes
represent the distinct object instances in memory, identified
by their address, and the edges represent references between
instances. An edge from a node n1 to a node n2 with label l
represents a field l in n1 that refers to n2.

As an example, Fig. 2 reports the memory model created
by DReaDs when the classes in the figure are executed with
the test case t. Such memory model represents the state of the
objects in memory after executing the test case. We can see
that the memory model includes the node A#01 that represents
the object of type A instantiated at line 0 (where #01 is its
identity hashcode). The object is part of the state of Z#00
as captured by the edge a, reflecting the fact that the state
of class Z includes the field a that refers to the object A#01.
The memory model includes also an object of type B (B#03)
and another object of type A (A#02) and the relative relations.

DReaDs builds and maintains the memory model incremen-
tally. It initializes the model to an empty graph, and updates
the model after each execution step. The updating mechanism
adds nodes and either adds or removes edges, according to the
memory related operations observed during the execution.

DReaDs adds a node to the model whenever it observes
a memory reference related to an object instance that is not
represented yet. To this end, it relies on a runtime monitoring
framework that detects each referenced object, and augments
the model with a new node for each object that is not already
represented in the model. In this way, DReaDs creates a
memory model that includes a node for each object instance
that has been accessed at least once at runtime.

DReaDs adds and removes edges to the model when ob-
serving assignments to instance fields. If the model already
contains an edge that represents the field, then DReaDs
removes it. If the value assigned to the field is not null, then
DReaDs augments the model with a new edge from the field
owner instance to the node identified with the assigned value.

DReaDs implements specific strategies to deal with primi-
tive fields and arrays. Primitive fields are represented as edges
from the corresponding instance to a special sink node that
stands for any primitive value. Array structures are treated as
special instances that include a field for each offset in the array.
Dynamic analysis of reaching definitions and reachable
uses. DReaDs exploits the memory model at runtime to
map memory-load and memory-store events to the class state
variables they involve.

When a memory event occurs on an object o, DReaDs
identifies all the objects affected by the event that include
the object o itself and all the objects that contain a direct or
indirect reference to o as a field value. First, DReaDs identifies
the node n in the memory model corresponding to o. Then,
starting from this node, it traverses the graph in a depth-first
fashion to identify all the nodes n0, ..., nk that are directly or
indirectly connected to n, and that represent all the objects o0,
..., ok that own a reference to the object o. Each path from a
node ni=0..k to n identifies a state variable that corresponds
to an object oi that includes o as part of its state. For example,
in the memory model shown in Fig. 2, the path from Z#00 to
B#03 identifies the class state variable Z.a.b that represents
the inclusion of the object B#03 in the state of the object Z#00.

DReaDs distinguishes between events that represent def-
initions and events that represent uses of state variables.
Definition events correspond to changes of the internal state of

an object, which is triggered by the assignment of a field. Use
events correspond to accesses to the value of state variables
in program statements.

In Fig. 2, the execution of the line 5 of test t leads to the
creation of the node Z#00, and of the edge a. Navigating the
graph, DReaDs identifies the occurrence of the direct definition
of the state variable Z.a, and of the nested definition of the
state variable Z.a.b that is part of the state of Z#00. Simi-
larly, line 6 loads the value of B#03. DReaDs interprets this
operation as a use of the class state variables A.b and Z.a.b.

DReaDs analyzes both the propagation of the assigned val-
ues through the code that can be executed thereafter (reaching
definition analysis) and the reachability of the accessed values
(reachable uses analysis). To this end, DReaDs maintains
a map of active definitions in memory and computes the
dynamic reaching definitions and reachable uses incrementally
for each basic block of each object, according to the classical
data-flow analysis equations [1]. Furthermore, DReaDs maps
each use of a state variable to the last active definition of
the state variable in the execution trace, thus identifying the
executed def-use pairs.
Generalization across multiple traces. As discussed above,
DReaDs maintains a high degree of precision by computing
and storing data flow information for each single object
instance observed in each execution trace. At the end of the
execution of all test cases, DReaDs generalizes the information
observed across multiple traces and objects by merging the
information collected on instances of the same class. In other
words, while at runtime DReaDs distinguishes objects using
their identity (memory address), at the end of execution
DReaDs distinguishes only between classes.

In this generalization step, DReaDs computes the set of
reaching definitions and reachable uses for each basic block
of the control flow graph, together with the executed def-use
pairs. Intuitively, this corresponds to all the elements that have
been observed in at least one execution trace for an instance
of the class under test.

B. Inference of Test Objectives

In the second step, DynaFlow uses the data flow information
computed dynamically in the first step to identify new test
objectives that corresponds to data flow elements that have
not been executed yet.

As in classic data flow testing techniques [2], [14], Dy-
naFlow considers never executed def-use pairs as test objec-
tives. As discussed above, we focus on interactions of methods
through state variables and consider def-use pairs of class
fields that correspond to inter- and intra-class def-use pairs
according to Harrold and Rothermel [5].

DynaFlow uses both the reaching definitions and the reach-
able uses computed in the first step to identify such new def-
use pairs. For any class state variable v and any method m,
DynaFlow first identifies both the definitions of v that reach
the exit of m along at least one execution trace (defs@exit) and
the uses of v reached from the entry of m along at least one
execution trace (uses@entry). It then pairs the defs@exit with

the uses@entry for the same class state variable to identify the
def-use pairs that can be executed by calling a pair of methods
in sequence in a particular class state.

More precisely, we define the set defs@exitv,m of a class
state variable v with respect to a class method m as the set of
the definitions of v that are executed within m and reach the
exit of m according to the information computed dynamically
in the first step. Similarly, we define the set uses@entryv,m

of a class state variable v with respect to a class method m

as the set of the uses of v that have been reached from the
entry of m according to the information computed dynamically
in the first step. For each class state variable v, DynaFlow
produces the set of def-use pairs to be executed that correspond
to the test objectives, by computing the cartesian product of
defs@exitv,m0 and uses@entryv,m00 for any possible pair of
methods m0 and m

00, and removing all def-use pairs that were
already executed.

The cartesian product of defs@exit and uses@entry may
contain some infeasible def-use pairs, but, differently from
classic static analysis, the cartesian product is computed on
dynamically produced information and this guarantees the
feasibility of the definitions and uses that occur in the pairs.
Thus the result suffers only from the possible infeasibility of
the pairing, but not of the single elements.

C. Test Cases Generation

In the third and last step, DynaFlow generates test cases
that exercise the new def-use pairs identified in the former
step. These test cases exercise execution paths that are not
exercised by executing the current test suite.

There exist many techniques to automatically generate
test cases. DynaFlow requires a technique that (1) can
generate test cases that exercise inter-procedural paths in
object oriented systems, (2) can generate test cases that cover
some given def-use pairs, (3) can distinguish between paths
that exercise each given def-use pair and paths that do not,
for example because they kill the definition before reaching
the use, or because they execute the definition and the use
on different instances of the class under test. The modern
technology of search-based test generation tools [15] can be
adapted to satisfy these requirements.

To evaluate our technique we adapted Evosuite, a tool for
automatically generating test cases based on genetic algo-
rithms [16], to generate test cases that satisfy the test objectives
identified with DynaFlow. We discuss the implementation
details in Section IV.

DynaFlow iterates through the three steps described in this
section until it cannot identify any additional test objective or
generate any additional test case.

IV. EVALUATION

This paper starts from the observation that classic data
flow analysis of object oriented code misses a lot of useful
information for testing, and is grounded on the hypothesis that
data flow information computed dynamically on the execution
traces can overcome the limitations of static approaches and

produce useful test objectives. Our empirical evaluation ad-
dresses the main research question:

To what extent is it possible to enhance an initial test suite
by exploiting dynamic data flow information?

To answer this question, we implemented the DynaFlow
technique for Java programs, and executed a set of experi-
ments on a benchmark of classes. We compare the test suites
generated with DynaFlow with the original test suites, to
evaluate the ability of DynaFlow to enhance the initial suite.
We also compare the DynaFlow test suites with the test suites
generated with a state-of-art test generator based on static data
flow analysis, to understand the improvement of dynamic over
classic data flow testing. Finally, we compare the DynaFlow
test suites with large test suites generated randomly to verify
that the good results of DynaFlow do not depend on the size
of the test suite. We compare the test suites in terms of their
ability to reveal failures, and we approximate this ability as
the amount of mutants killed by the test suites. The more
mutants a test suite can kill, the more effective the test suite
is in revealing the corresponding faults.

In the following, we present the prototype of DynaFlow,
detail the design of the experiments, analyze the obtained
results, and discuss the threats to the validity of our findings.

A. Prototype Implementation

We designed a prototype implementation of the DynaFlow
technique for Java programs relying on a prototype imple-
mentation of DReaDs for dynamic data flow analysis of Java
programs and on a modified version of EvoSuite for test case
generation.

DReaDs computes data flow information dynamically while
executing JUnit test cases. It is implemented on top of the
DiSL framework for dynamic analysis [17], and relies on
dynamic instrumentation to capture data flow events and
maintain the memory model.

A dedicated module uses the information computed with
DReaDs to derive a set of new test objectives in the form
of def-use pairs. Such objectives are fed to EvoSuite that we
modified to generate test cases that satisfy the new objectives.

EvoSuite generates test cases using genetic algorithms, iter-
atively evolving an initial population of test suites by applying
crossover and mutation operators to the individuals. It uses
a fitness function to measure the distance of the individuals
from the optimal solution, and retains the best individuals with
high probability. We modified EvoSuite to generate test cases
that execute the DynaFlow test objectives by defining an ad-
hoc fitness function. EvoSuite provides a node-node fitness
function to steer the test case generation first towards a node
of the control flow graph and then towards another node that
can be reached thereafter [15]. We encoded DynaFlow def-use
pairs as pairs of nodes of the control flow graph, and adapted
the node-node fitness function of EvoSuite to execute these
pairs of nodes. We further adapted the fitness function both
to ensure that the definition and the use of a def-use pair are
executed against the same object instance and to exclude the
paths that contain a kill of the definition.

Our modified fitness function distinguishes definitions and
uses according to their invocation context that correspond to
the chain of method invocations that leads to the definition
or the use. In this way, we can identify definitions and uses
of nested class state variables, captured as the modifications
of the internal state of a class C that occur through a chain
of invocations that starts from C itself and calls methods on
objects that are directly or indirectly part of the state of C.

For instance in Fig. 2, object B#03 is part of the state
of object A#01, which in turn is part of the state of object
Z#00. Our modified fitness function considers a definition
(use) that occurs on B#03 as a definition (use) of the class
state variable Z.a.b when B#03 is accessed from a chain of
method invocations that starts from Z#00, for instance at line
6 of the test case of Fig. 2.

B. Experimental Setting

We evaluated DynaFlow on 30 Java classes extracted from
some projects of the SF100 set of programs [18]. The bench-
mark reflects the expected usage scenario of DynaFlow, which
targets the testing of classes with complex state. We manually
selected classes among the ones that include one or more
non-primitive fields and implement one or more methods that
access or modify the value of such fields in a non trivial
way. To avoid biases, we generated the initial test suite with
EvoSuite for branch coverage that represents the most common
use of EvoSuite.

Table III reports the relevant characteristics of the classes
used in our experiments: the number of lines of code (LOC),
the number of dependent classes as computed using the
Dependency Finder tool1 (Reachable code – # classes) and the
sum of lines of code of the class under test and its dependent
classes (Reachable code – LOC). The analysis domain of
DynaFlow is the union of the class under test and its dependent
classes, that is, the classes directly or indirectly called from
the class under test. Thus the number of dependent classes
and their LOCs indicates the size of the DynaFlow analysis
domain. The last column reports the branch coverage obtained
when executing the initial test suite generated with EvoSuite
for branch coverage.

For each subject class, we executed DynaFlow to enhance
the initial test suite, with a maximum budget of three Dy-
naFlow iterations. We generated two additional test suites for
each class: a large suite generated randomly and a suite that
covers the def-use pairs computed statically. We generated the
large test suite using Randoop with a limit of 1000 test cases,
and the static def-use test suite using EvoSuite for static data
flow testing [7].

We evaluated the effectiveness of the test suites as the
amount of mutants killed when executing the suites. We use
these data as a proxy measure of the amounts of failures that
can be revealed by the test suites. We generated mutants for
the classes under test and their dependent classes with the

1http://depfind.sourceforge.net

TABLE III: Benchmark classes

Reachable code Branch
CoverageClass Project LOC # classes LOC

AttributeRegistry freemind 371 68 15995 76%
ColorImage jiggler 1273 43 11758 11%
HandballModel jhandballmoves 814 110 9979 11%
Robot at-robots2-j 417 109 7411 29%
ComplexImage jiggler 872 20 7153 50%
MealList caloriecount 388 30 4685 97%
GameState gangup 472 23 3813 95%
DecadalModel corina 295 15 3680 70%
BattleStatistics twfbplayer 578 29 3665 83%
Hero dsachat 349 19 3576 57%
FoodList caloriecount 146 24 3464 100%
MoveEvent jhandballmoves 247 22 3076 75%
Knight feudalismgame 393 16 2471 34%
Challenge dsachat 309 7 2370 22%
FieldInfo fixsuite 367 14 2228 100%
Formation gfarcegestionfa 104 13 2195 100%
ComponentInfo fixsuite 276 13 2119 100%
ObjectChartData
Model jopenchart 252 10 1922 100%

ProductDetails a4j 518 19 1783 90%
ProductInfo a4j 96 7 1338 100%
HardwareBus at-robots2-j 144 13 1310 100%
HL7FieldImpl openhre 172 10 1078 95%
GroupInfo fixsuite 179 6 1021 80%
StackedChartData
ModelConstraints jopenchart 164 5 910 69%

EmailFacadeImpl bpmail 414 13 854 7%
MemoryRegion at-robots2-j 48 7 839 100%
ListChannel caloriecount 78 14 728 62%
InventorySavePet petsoar 91 6 496 88%
HL7TableImpl openhre 60 5 396 100%
DefaultDataSet jopenchart 123 2 187 75%

PiTest mutation analysis tool,2 a tool commonly adopted in
recent related work [19], [20].

C. Experimental Results

Table IV reports the results of our experiments: For each
subject class (first column), the table indicates the number
of def-use pairs (number of test objectives) identified by
DynaFlow, the number of mutants killed by the generated test
suites and the size (number of test cases) of the test suites.

The columns under number of test objectives report the
number of def-use pairs executed i) by the initial test suite
generated with EvoSuite for branch coverage (column Ini-
tially covered), ii) after three iterations of DynaFlow (column
Covered DynaFlow) and iii) not yet covered after the third
iteration. In our experiment the enhanced test suite always
executes a higher number of def-use pairs than the initial suite.
In total, the enhanced test suites execute 44% more pairs than
the initial suites. Per class, we observe a median increment
of 83%, with the first quartile being 27%, the third 162%,
and the minimum and a maximum increments 1% and 391%,
respectively. Thus, the iterative process of DynaFlow can both
identify new test objectives and generate new test cases to
execute them.

The test objectives that are identified but not executed by
DynaFlow amount to 37% of all the identified pairs. Some of
these test objectives are identified at the third iteration step
for which no test generation attempt has been taken, others
might not have been executed due to known limitations of
EvoSuite [18], yet others are possibly infeasible.

2http://pitest.org

TABLE IV: Experimental Results
Number of test objectives Number of killed mutants Number of test cases

Class Initially
covered

Covered
DynaFlow

Not
covered

EvoSuite-
branch

EvoSuite-
data flow Randoop DynaFlow EvoSuite-

branch
EvoSuite-
data flow Randoop DynaFlow

AttributeRegistry 331 375 129 125 143 0 145 19 19 1000 48
ColorImage 230 441 1439 165 107 34 270 19 33 1000 32
HandballModel 98 99 160 395 264 213 423 36 63 1000 60
Robot 91 188 129 43 32 60 63 20 60 1000 41
ComplexImage 105 185 354 126 75 11 165 16 23 1000 37
MealList 23 108 101 125 20 49 162 21 11 1000 61
GameState 2133 2203 198 150 154 57 203 7 53 1000 51
DecadalModel 198 556 381 66 79 34 69 23 38 1000 72
BattleStatistics 317 380 95 294 175 93 334 20 34 1000 62
Hero 44 66 20 166 113 0 177 14 24 1000 80
FoodList 14 64 34 35 28 14 51 16 50 1000 46
MoveEvent 74 194 90 86 15 0 102 20 48 1000 120
Knight 76 89 106 134 99 135 166 23 65 1000 201
Challenge 54 103 66 89 59 5 132 19 15 1000 58
FieldInfo 13 50 24 36 40 31 56 3 15 1000 18
Formation 10 49 8 17 23 11 18 5 37 1000 46
ComponentInfo 42 123 31 64 77 55 69 8 34 1000 46
ObjectChartData
Model 34 38 87 105 0 55 141 11 39 1000 76

ProductDetails 108 228 30 314 294 295 498 13 58 1000 105
ProductInfo 113 281 15 246 61 215 289 4 8 1000 67
HardwareBus 45 57 10 27 21 14 29 5 15 1000 16
HL7FieldImpl 24 46 6 64 74 0 75 8 38 1000 28
GroupInfo 32 113 40 85 26 81 98 9 34 1000 53
StackedChartData
ModelConstraints 102 179 136 142 7 110 209 10 4 1000 39

EmailFacadeImpl 34 56 3 41 44 0 61 12 12 1000 25
MemoryRegion 44 54 9 53 38 0 58 7 9 1000 48
ListChannel 23 44 0 9 27 8 51 1 10 1000 26
InventorySavePet 12 20 3 16 5 24 31 8 33 1000 21
HL7TableImpl 13 19 0 34 34 35 38 5 7 1000 13
DefaultDataSet 9 14 2 12 25 25 23 9 20 1000 23
Sum 4446 6422 3706 3264 2159 1664 4206 391 909 30000 1619
All the experiments have been repeated 6 times with different seeds to govern the random mechanisms of the test generation. The 90th confidence interval was 5.5% of the
measured value on the average, with a maximum of 11.5%. The 95th confidence interval was 6.5% of the measured value on the average, with a maximum of 13.7%.

The second part of Table IV (columns Number of killed mu-
tants) shows the number of mutants killed by the generated test
suites. The DynaFlow enhanced test suite (column DynaFlow)
always kills more mutants than the test suite generated by
EvoSuite for branch coverage (column EvoSuite-branch) that
was used to seed DynaFlow. In total, DynaFlow kills 942
(29%) more mutants than the original test suite. Per class,
we observe a median increment of 27%, with the first quartile
being 12%, the third 48%, and the minimum and a maximum
increments 5% and 467% respectively. These results indicate
that the new test cases generated by exploiting the dynamic
data flow information effectively enhance the initial test suite
in terms of fault detection.

Column Evosuite-data flow reports the mutants killed by test
suites generated with EvoSuite for static data flow coverage.
The DynaFlow test suites kills more mutants that the ones
generated for static data flow coverage for most classes, with
an average of twice as many killed mutants. Per class, we
observe a median increment of number of mutants killed with
DynaFlow over Evosuite for static data flow coverage of 69%,
with the first quartile being 32%, and the third 152%. This
result supports our claim that dynamic data flow analysis
selects better test objectives than static data flow analysis.
Counter-intuitively the data in the table indicate that EvoSuite-
branch slightly outperforms EvoSuite-data flow, differently to
what reported in previous work [7]. This may be caused by
the fact that this benchmark includes complex classes that are

difficult to analyze with static analysis.

The third part of the table (columns Number of test cases)
reports the amount of test cases generated with the different
approaches, and indicates that DynaFlow generates larger test
suites than the other approaches, thus raising the question of
the importance of the size of the test suites. To check the
impact of the site size on the test effectiveness, we compared
the results of DynaFlow test suites with the results of very
large test suites generated randomly with Randoop. The results
are reported in columns Randoop. We can see that Randoop is
much less effective than any of the other techniques, despite
the very large size of the test suites generated with Randoop
(1000 test cases for each suite). In total, the DynaFlow test
suites kill 2.5 times more mutants than Randoop test suites.
We observe that Randoop kills zero or few mutants for some
classes. This happens for classes that require a complex
initialization or a complex interaction with other classes to
be thoroughly exercised. This indicates that the larger amount
to mutants killed with DynaFlow test suites does not depend
on the size of the suite, but on the quality of the test cases.

The dynamic analysis component of DynaFlow generated
the test objectives executing the test cases of each class within
10 seconds in most of the cases, and within 45 seconds in few
worst cases, with performances fully acceptable in the context
of automated test case generation. The current main cost factor
in the experiments is the test case generation step that depends
on our naı̈ve customization of EvoSuite.

1 c l a s s B a t t l e S t a t i s t i c s {
2 p r i v a t e S i d e s C o u n t e r swaps = new S i d e s C o u n t e r () ;
3 p u b l i c i n t t o t a l S w a p s (f i n a l Combatan tS ide s i d e) {
4 re turn swaps . g e t S i d e V a l u e (s i d e) ; / / Mutant : r e t u r n 0 ;
5 }}
6
7 c l a s s S i d e s C o u n t e r {
8 p r i v a t e Map p e r S i d e C o u n t e r s = . . . ;
9 p u b l i c vo id i n c r e m e n t P e r S i d e C o u n t e r s (. . .) { . . . }

10 p u b l i c i n t g e t S i d e V a l u e (Combatan tS ide s i d e) {
11 i n t sum = 0 ;
12 i f (s i d e == n u l l) {
13 f o r (Coun te r c o u n t e r : p e r S i d e C o u n t e r s . v a l u e s ()) {
14 sum += c o u n t e r . g e t V a l u e () ;
15 }
16 re turn sum ; / / Mutant : r e t u r n 0 ;
17 }
18 re turn p e r S i d e C o u n t e r s . g e t (s i d e) . g e t V a l u e () ;
19 / / Mutant : r e t u r n 0 ;
20 }}

Fig. 3: Example of mutants killed only by DynaFlow test cases

D. Discussion

The results presented in the former subsection indicate that
dynamic data flow testing can augment an initial test suite with
test cases that reveal faults that would otherwise go undetected,
and thus enable us to positively answer our research question.
To support our hypothesis that dynamic data flow analysis can
identify interactions among methods that are difficult to find
otherwise, we manually inspected the mutants killed only by
the DynaFlow test cases and investigated their nature.

Indeed, we found out that most of the mutants killed only
by DynaFlow test cases are characterised by particular com-
binations of method calls that are triggered by test objectives
that involve interactions through dynamically instantiated state
variables. These interactions require the methods of the class
under test to be executed in multiple invocation contexts and
with different values of the (nested) class state variables.
DynaFlow can identify such interactions dynamically, and
generate test cases that kill the corresponding mutants, while
the other approaches cannot identify these interactions and
thus fail to generate the required test cases.

Fig. 3 shows two classes and a set of mutants that are
killed only by DynaFlow test cases. The listing shows the
class under test BattleStatistics that owns a reference
to class SidesCounter through its swap field. The method
totalSwaps() in class BattleStatistics invokes the
method getSideValue() in class SidesCounter.

Three mutants, obtained with the PiTest operator that sub-
stitutes the return statements in method totalSwaps()

and getSideValue() with return 0, are indicated with
comments in the figure. In our experiments, only DynaFlow
test cases kill these three mutants. This happens because
DynaFlow targets the interactions on the subfields of variable
swap that are nested in the state of the class under test: Dy-
naFlow requires the two uses of the state variable Battle-
Statistics.swaps.perSideCounters at lines 13 and
18 to be coupled with observed definitions of that state
variable. For example, DynaFlow explicitly requires the use at
line 13 to be executed after the definition within the method
at line 9 (not showed in the figure for space reasons) that

modifies the content of the map perSideCounter. This
increases the chances of returning a sum different from 0 and
exposing the mutant at line 16. None of the other approaches
identifies test objectives that capture this combinations of
method calls, and thus may not generate test cases that exercise
such combinations.

E. Threats to Validity

This subsection acknowledges the threats that may limit the
validity of our experimental results, and briefly discusses the
countermeasures that we adopted to mitigate such threats.

Threats to internal validity may derive from the evaluation
setting and execution, and depend on the DynaFlow prototype
and EvoSuite. Although we tested the DynaFlow prototype,
we cannot exclude the presence of faults. We are aware that
the limitations of EvoSuite could prevent the execution of
feasible def-use pairs, and thus our results may be a pessimistic
approximation of the effectiveness of DynaFlow. Current work
on improving EvoSuite could reduce this limitation, potentially
increase the effectiveness of our prototype, and improve the
accuracy of the results. The randomness nature of EvoSuite
could also impact on the results, to reduce such impact we
repeated each experiment 6 times.

The selection of the initial test suite may also affect the re-
sults. We selected the initial suite automatically to avoid biases
due to manual generation, and we used EvoSuite for branch
coverage, being a common tool and a common setting for
the tool. We also conducted some experiments with different
initial test suites and we did not reveal major differences in the
obtained results. Thus we decided to perform the main core of
the experiments with initial test suites generated automatically.

Threats to construct validity involve how we measure the
effectiveness of DynaFlow. We approximate the fault detection
capability as the amount of killed mutants that we generated
with the PiTest tool. Approximating fault detection in terms of
killed mutants is common practice in current research projects
and is widely accepted as a reasonable proxy measure. PiTest
has been adopted in recent work [19], [20], and we modified it
to prevent undesired approximations of the results. We plan to
repeat our experiments with different mutation analysis tools
and with real program faults.

Threats to external validity may derive from the selection of
the benchmark classes. We mitigated this thread by randomly
selecting classes from a well known corpus (SF100). We plan
to extend the experiments to a larger set of classes.

V. RELATED WORK

In this paper we present a test case generation approach that
benefits from a new application of data flow analysis that we
call dynamic data flow testing. In this section we discuss the
main automated test case generation techniques, and briefly
survey the work in data flow testing and dynamic analysis.
Automated Test Generation. Automated test case generation
approaches either randomly sample the possible method se-
quences [21], [22], [23], [24] or aim at specific test goals [25],
[26], [27], [28], [29], [30], [31], [32], [16], [33], [34], [7].

Random based test generation techniques either guide the
generation of incrementally improved test cases by feeding
back the random process with newly built valid objects, like
Eclat and Randoop [22], [24], or statically identify methods
that can return objects to pass as inputs to other methods,
like JCrasher [21]. In general, purely random approaches can
experience difficulties in exploring method interactions and
program paths that depend on constrained inputs.

Techniques that generate test cases from test objectives,
consider objectives derived either from formal specifications or
structural characteristics of the classes, and include techniques
that address intra- or inter-procedural goals. Intra-procedural
test objectives refer to some structural coverage of methods,
such as statement and branch coverage. Symbolic Path Finder,
Bogor/Kiasan and JBSE exploit symbolic execution to explore
the path structure of the methods and generate test cases by
solving path constraints [27], [29], [34]. EvoSuite relies on
genetic algorithms with fitness functions designed to address
different structural coverage criteria [16]. TestEra enumerates
all non-isomorphic method inputs over some bounded do-
main [25]. The approach of parametrized unit testing applies
concolic heuristics to generalize unit test cases over their
inputs [28]. The common weakness of these techniques is
the (often unrealistic) assumption that generating test cases
to cover single methods can result, causally or coincidentally,
in test cases that exercise inter-related methods and classes.

Inter-procedural test objectives explicitly identify interac-
tions between methods. MSeqGen addresses pairs of methods
that are called in sequence from the source code [31]. Seeker
aims to method sequences that reach specific object states [35].
RecGen [32] and Palus [33] investigate the idea that methods
with high textual similarity are likely to interact on common
elements. The approach of Buy et al. and a recent extension
of EvoSuite rely on static data flow analysis to address inter-
actions between methods that define and use the same objects,
respectively [30], [7]. These latter approaches share with
DynaFlow the idea that def-use pairs of class state variables
identify relevant state dependent behaviors in object-oriented
programs, but compute the data flow relations statically and
can thus miss many important relations. DynaFlow shares with
previous work test objectives that identify interactions between
methods, but considers a novel class of test objectives that are
difficult to compute and address with existing technique.

Though focusing on test objectives, most above techniques
still exploit randomized mechanisms to generate the test
cases. For instance, Palus [33] is implemented on top of
Randoop [24], biasing the distribution that governs the ran-
dom sampling. Search based approaches [36], [16], [7] are
randomized procedures guided by a fitness function over the
test objectives. At the state of the art, the randomized mecha-
nisms generate self-contained test cases more effectively than
systematic techniques (like [30], [25], [26], [27], [29], [34]).
These latter rely on direct heap manipulation to construct the
input objects and may thus result in unrealistic test cases.

Data Flow Testing. Data flow analysis [37], [38], [39] has

been applied to software testing since the mid seventies [2],
[14], [40], [41]. Many authors have investigated the differences
and the complementarities between data flow, branch and
mutation testing, often with contrasting results [4], [3], [42],
[43], [44], [45], [46]. Other authors have focused on the
applicability of data flow analysis in presence of pointers and
aliases [12], [47]. The potential of data flow abstractions for
enhancing the testing of object oriented software has increas-
ingly attracted the attention of researchers in recent years [48],
[30], [49], [50], [6], [11], [51]. However, some studies indicate
that the inter-procedural structure of object oriented programs
that exploit dynamic binding exacerbates the problems of the
precision of static data flow analysis [52], [8]. DynaFlow
generates test cases that exploit data flow information derived
from execution traces. Being derived dynamically, this infor-
mation is less affected by the computational costs and high
false-positive rates that affect static data flow analysis.
Dynamic Analysis. Several dynamic techniques trace the
accesses to program variables to reveal anomalous uses of
the memory [53], [54], [55], security vulnerabilities [56],
[57], [58], or data dependencies [59], [60], [61]. Existing
approaches to test automation monitor method sequences and
parameter instances at runtime to automatically construct scaf-
folding for regression testing [62], [63], [64]. Memory graphs
similar to the one implemented in DynaFlow have been used to
support program comprehension and advanced functionality of
debuggers [65], [66]. To the best of our knowledge, DynaFlow
is the first technique that exploits dynamically observed data
flow information in the context of test case generation.

VI. CONCLUSIONS

In this paper, we present dynamic data flow testing, a novel
approach to generate inter-procedural test cases for object
oriented software systems.

Our research is grounded on the empirical observation that
the data flow information computed with classic analysis of
the source code misses a lot of information that corresponds to
relevant dynamic behaviors that shall be tested. Our technique
exploits data flow information computed dynamically on the
execution traces to identify relevant method interactions and
generates test cases to execute them. The approach considers
an initial test suite and iteratively enhances it with new test
cases. At each iteration the approach analyzes the execution
traces of the available test cases to derive new test objectives,
and generates test cases that cover them.

Our experiments indicate that (1) the test cases identified
with our approach reveal failures that go undetected with the
initial test suite, (2) the enhanced test suite is more effective
than classic data flow testing, (3) the effectiveness of the
generated test suite does not depend on the size of the test
suite itself, but on the relevance of the identified test cases.

We believe that this work could represent the first step
towards a new testing paradigm, which exploits dynamic data
flow information observed at runtime to effectively exercise
interesting states and interactions that could cause subtle
failures and that would go otherwise undetected.

REFERENCES

[1] M. Pezzè and M. Young, Software Testing and Analysis: Process,
Principles and Techniques. Wiley, 2007.

[2] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Transactions of Software Engineering, vol. 11,
no. 4, pp. 367–375, 1985.

[3] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of
the effectiveness of dataflow- and controlflow-based test adequacy cri-
teria,” in Proceedings of the 16th International Conference on Software
Engineering, ser. ICSE ’94. IEEE, 1994, pp. 191–200.

[4] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions
on Software Engineering, vol. 19, pp. 774–787, 1993.

[5] M. J. Harrold and G. Rothermel, “Performing data flow testing on
classes,” in Proceedings of the 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, ser. FSE ’94. ACM, 1994, pp.
154–163.

[6] G. Denaro, A. Gorla, and M. Pezzè, “Contextual integration testing
of classes,” in Proceedings of the 11th International Conference on
Fundamental Approaches to Software Engineering, ser. FASE ’08.
Springer, 2008, pp. 246–260.

[7] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test
generation,” in Proceedings of the 24th IEEE International Symposium
on Software Reliability Engineering, ser. ISSRE ’13. IEEE, 2013.

[8] G. Denaro, M. Pezzè, and M. Vivanti, “On the right objectives of data
flow testing,” in Proceedings of the 7th International Conference on
Software Testing, Verification and Validation, ser. ICST 2014. IEEE,
2014, pp. 71–80.

[9] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering, ser. FSE ’14. ACM, 2014.

[10] J. Laski, “Data flow testing in STAD,” Journal of Systems and Software,
vol. 12, no. 1, pp. 3–14, 1990.

[11] G. Denaro, A. Gorla, and M. Pezzè, “Datec: Dataflow testing of java
classes,” in ICSE Companion ’09: Proceedings of the International
Conference on Software Engineering (Tool Demo). ACM, 2009, pp.
421–422.

[12] T. J. Ostrand and E. J. Weyuker, “Data flow-based test adequacy analysis
for languages with pointers,” in Proceedings of the 4th Symposium on
Testing, Analysis, and Verification, ser. TAV ’91. ACM, 1991, pp.
74–86.

[13] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Proceedings of the 12th International Conference on Compiler
Construction, ser. CC ’03. Springer, 2003, pp. 153–169.

[14] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions of Software Engineering, vol. 14,
no. 10, pp. 1483–1498, 1988.

[15] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[16] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE ’11, 2011, pp.
416–419.

[17] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“Disl: a domain-specific language for bytecode instrumentation,” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, ser. AOSD ’12. ACM, 2012, pp. 239–
250.

[18] G. Fraser and A. Arcuri, “Sound empirical evidence in software test-
ing,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE, 2012, pp. 178–188.

[19] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE ’14. ACM, 2014, pp.
435–445.

[20] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE ’14, 2014, pp. 72–82.

[21] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness
tester for Java,” Software—Practice and Experience, vol. 34, no. 11, pp.
1025–1050, Sep. 2004.

[22] C. Pacheco and M. D. Ernst, “Eclat: automatic generation and classifi-
cation of test inputs,” in Proceedings of the 19th European conference
on Object-Oriented Programming, ser. ECOOP’05, 2005, pp. 504–527.

[23] I. Ciupa and A. Leitner, “Automatic testing based on design by contract,”
in In Proceedings of Net.ObjectDays 2005 — 6th Annual International
Conference on Object-Oriented and Internet-based Technologies, Con-
cepts, and Applications for a Networked World, 2005, pp. 545–557.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International Con-
ference on Software Engineering, ser. ICSE ’07, 2007, pp. 75–84.

[25] D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” in Proceedings of the 16th IEEE International
Conference on Automated Software Engineering, ser. ASE ’01. IEEE
Computer Society, 2001, pp. 22–31.

[26] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated testing
based on java predicates,” in Proceedings of the 11th ACM SIGSOFT
international symposium on Software testing and analysis, ser. ISSTA
’02. ACM, 2002, pp. 123–133.

[27] S. Khurshid, C. S. Pǎsǎreanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in Tools and Algorithms for
Construction and Analysis of Systems, ser. LNCS 2619. Springer, 2003.

[28] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Proceedings
of the 13th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE ’05. ACM, 2005, pp. 253–262.

[29] X. Deng, J. Lee, and Robby, “Bogor/Kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems,” in
International Conference on Automated Software Engineering, 2006, pp.
157–166.

[30] U. Buy, A. Orso, and M. Pezzè, “Automated testing of classes,” in
Proceedings of the 9th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA ’00. ACM, 2000, pp. 39–48.

[31] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“Mseqgen: Object-oriented unit-test generation via mining source code,”
in Proceedings of the the 7th Joint Meeting on The Foundations of
Software Engineering, ser. ESEC/FSE ’09. ACM, 2009, pp. 193–202.

[32] W. Zheng, Q. Zhang, M. Lyu, and T. Xie, “Random unit-test gen-
eration with mut-aware sequence recommendation,” in Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’10. ACM, 2010, pp. 293–296.

[33] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Palus: A hybrid automated
test generation tool for java,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York, NY,
USA: ACM, 2011, pp. 1182–1184.

[34] P. Braione, G. Denaro, and M. Pezzè, “Enhancing symbolic execution
with built-in term rewriting and constrained lazy initialization,” in
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. ACM, 2013, pp. 411–421.

[35] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su,
“Synthesizing method sequences for high-coverage testing,” in Proceed-
ings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’11.
ACM, 2011, pp. 189–206.

[36] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA ’04. ACM, 2004, pp. 119–128.

[37] F. E. Allen and J. Cocke, “A program data flow analysis procedure,”
Communications of the ACM, vol. 19, no. 3, pp. 137–148, 1976.

[38] J. Rodriguez, “A graph model for parallel computation,” Massachusetts
Institute of Technology, Tech. Rep. MIT/LCS/TR-6, 1969.

[39] J. Dennis, “First version of a data flow procedure language,” in Program-
ming Symposium, ser. Lecture Notes in Computer Science. Springer,
1974, vol. 19, pp. 362–376.

[40] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A formal
evaluation of data flow path selection criteria,” IEEE Transactions on
Software Engineering, vol. 15, 1989.

[41] E. J. Weyuker, “The cost of data flow testing: An empirical study,” IEEE
Transactions on Software Engineering, vol. 16, no. 2, pp. 121–128, 1990.

[42] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental
evaluation of data flow and mutation testing,” Software-Practice &
Experience, vol. 26, pp. 165–176, 1996.

[43] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verification
and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[44] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing:
an experimental comparison of effectiveness,” Journal of Systems and
Software, vol. 38, no. 3, pp. 235–253, 1997.

[45] M. M. Hassan and J. H. Andrews, “Comparing multi-point stride cov-
erage and dataflow coverage,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE, 2013, pp. 172–181.

[46] G. Denaro, M. Pezzè, and M. Vivanti, “Quantifying the complexity
of dataflow testing,” in Proceedings of the International Workshop on
Automation of Software Test, ser. AST ’13. IEEE, 2013, pp. 132–138.

[47] A. Orso, S. Sinha, and M. J. Harrold, “Classifying data dependences
in the presence of pointers for program comprehension, testing, and de-
bugging,” ACM Transactions on Software Engineering and Methodology,
vol. 13, no. 2, pp. 199–239, Apr. 2004.

[48] A. Orso and M. Pezzè, “Integration testing of procedural object-oriented
languages with polymorphism,” in Proceedings of the 16th International
Conference on Testing Computer Software: Future Trends in Testing, ser.
TCS ’99, 1999.

[49] V. Martena, A. Orso, and M. Pezzè, “Interclass testing of object oriented
software,” in Proceedings of the 8th IEEE International Conference on
Engineering of Complex Computer Systems, ser. ICECCS ’02. IEEE,
2002, pp. 135–144.

[50] A. L. Souter and L. L. Pollock, “The construction of contextual def-
use associations for object-oriented systems,” IEEE Transactions on
Software Engineering, vol. 29, no. 11, pp. 1005–1018, 2003.

[51] R. T. Alexander, J. Offutt, and A. Stefik, “Testing coupling relationships
in object-oriented programs,” Journal of Software Testing, Verification,
and Reliability., vol. 20, no. 4, pp. 291–327, 2010.

[52] D. Grove and C. Chambers, “A framework for call graph construction al-
gorithms,” ACM Transactions on Programming Languages and Systems,
vol. 23, no. 6, pp. 685–746, 2001.

[53] J. C. Huang, “Detection of data flow anomaly through program in-
strumentation,” IEEE Transactions on Software Engineering, vol. SE-5,
no. 3, pp. 226–236, 1979.

[54] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic, “Effective memory
protection using dynamic tainting,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing, ser. ASE ’07. ACM, 2007, pp. 284–292.

[55] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision,” in Proceedings of the annual conference on

USENIX Annual Technical Conference. USENIX Association, 2005,
pp. 2–2.

[56] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in Proceedings of the 31st International Conference on Soft-
ware Engineering, ser. ICSE ’09. IEEE, 2009, pp. 474–484.

[57] T. Wang, T. Wei, G. Gu, and W. Zou, “Checksum-aware fuzzing
combined with dynamic taint analysis and symbolic execution,” ACM
Transaction of Information System Security, vol. 14, no. 2, pp. 1–28,
2011.

[58] J. Newsome, “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software,” in Pro-
ceedings of the 12th Annual Network and Distributed System Security
Symposium, 2005.

[59] B. Korel and J. Laski, “Dynamic program slicing,” Information Process-
ing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[60] F. Tip, “A survey of program slicing techniques,” Journal of Program-
ming Languages, vol. 3, pp. 121–189, 1995.

[61] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of
program slicing,” SIGSOFT Software Engineering Notes, vol. 30, no. 2,
pp. 1–36, 2005.

[62] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’05. ACM,
2005, pp. 114–123.

[63] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’06. ACM, 2006, pp. 253–264.

[64] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “Ocat: Object capture-based
automated testing,” in Proceedings of the 19th International Symposium
on Software Testing and Analysis, ser. ISSTA ’10. ACM, 2010, pp.
159–170.

[65] T. Zimmermann and A. Zeller, “Visualizing memory graphs,” in Revised
Lectures on Software Visualization. Springer, 2002, pp. 191–204.

[66] A. Lienhard, T. Gı̂rba, and O. Nierstrasz, “Practical object-oriented back-
in-time debugging,” in Proceedings of the 22nd European conference on
Object-Oriented Programming, ser. ECOOP ’08. Springer, 2008, pp.
592–615.

