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Abstract—Most distributed applications involve some form
of event-based interaction, often implemented using a publish-
subscribe (pub-sub) infrastructure. To improve scalability, the
acts of matching events against subscriptions and delivery them
are performed collaboratively by a set of brokers connected
into an overlay network. Recent research has proposed several
approaches to support the self-adaptation of such overlay
network to adapt it to changes in application traffic. However
these approaches focus on the monitor, analyze, plan parts of the
self-adaptation loop, without considering the issues that arise in
the execution part. This paper proposes a set of primitives that
fills the gap in the execution phase. Compared to existing work,
our approach: (i) is transparent w.r.t. the routing policies of the
middleware, (i) preserves existing properties and guarantees
of the middleware, such as no duplication of events, causal
ordering, and minimal delays for the events delivered during
a reconfiguration. We discuss the correctness of our primitives
and implement them in a simulated environment to measure
their cost in terms of network overhead.

Keywords-Pub-sub systems; topology management; self-
adaptation actions;

I. INTRODUCTION

The last decade has seen the development of a large
number of pub-sub infrastructures [20], [2], [10], [19],
[8], [5], coming from academia and industry. These in-
frastructures enable distributed components to subscribe
to the event notifications (or simply “events”) they are
interested to receive, and to publish those they want to
spread around [17]. To improve scalability, many of them
provide distributed solutions [6], [4], in which the processes
of matching events against subscriptions and delivering them
to interested recipients are performed collaboratively by a set
of brokers connected into an overlay network. Researchers
and practitioners working on pub-sub infrastructures have
mainly focused on the issues of providing efficient protocols
to route information and split the processing load among
available brokers [6], [4].

This work focuses on dynamically self-adapting the topol-
ogy of the overlay network to the application traffic. This
aspect becomes of primary importance today, as more and
more messaging infrastructures are offered as a service in
the Cloud. For instance, Amazon EC2 provides a Simple
Notification Service (SNS) to deliver notifications; VMware
CloudFoundry includes messaging API; Microsoft Azure
offers a Service Bus supporting a complete pub-sub model.
In this context, the cloud provider has a complete control

over the network of brokers, and frequent overlay recon-
figurations become one of the core mechanisms to achieve
elasticity, which allows to rapidly scale-in to tolerate sudden
network spikes, and scale-out to minimize the usage of
processing resources. Moreover, systems like EC2 offer
computational resources from different, geographically sep-
arate, zones. This is completely transparent from the point
of view of the application, but not from the point of view
of the infrastructure because traffic between different zones
is expensive and has a higher latency. In this context, a
reconfiguration mechanism that optimizes the routes taking
zones into account becomes even more important.

While some self-adaptive solutions have been proposed
in the literature to reconfigure the overlay network and
optimize the information flow [21], [18], [9], [24], they
are all hampered by the fact that during the reconfiguration
phase, events may be lost, duplicated, received out of order,
and with increased delay. This lack of guarantees reduces
the applicability of overlay reconfiguration algorithms in
contexts where strong guarantees are required, e.g., financial
applications for online trading.

This paper introduces three novel generic and transpar-
ent overlay reconfiguration primitives, which realize the
execution phase of the self-adaptation loop of a pub-sub
system and are transparent w.r.t. the other phases of the self-
adaptation logic (monitor, analysis, plan). Our primitives are
generic: they work with every pub-sub routing protocol that
relies on a tree topology [7], or that builds multiple tree
topologies on top of a generic topology [6]. Moreover they
are also transparent: they do not impact on the guarantees
offered by the underlying pub-sub system. Most importantly,
they preserve guaranteed delivery with no duplication of
events, and causal ordering.

In this paper we (i.) describe our reconfiguration primi-
tives, (ii.) discuss their correctness and properties, (iii.) show
how our they can be adopted to support existing self-
adaptive reconfiguration strategies, and (iv.) evaluate them
in a simulated environment, measuring the reconfiguration
cost in terms of network traffic under different scenarios.

Consistently, Section II introduces the terminology we
use in the rest of the paper; Section III motivates the
work and provides a classification of existing reconfiguration
approaches; Sections IV and V describe our primitives and
highlight their properties; Section VI provides an evaluation
of our primitives in a simulated environment. Finally, Sec-



tion VII provides some conclusive remarks.
II. SYSTEM MODEL

We consider a distributed pub-sub infrastructure, com-
posed of a set of brokers B, connected into an overlay
network, serving a set of clients C', which act as producers,
publishing events, and consumers, subscribing to events.

The overlay network. We
model the overlay network —
as a tree T'= (B, L) where  Broker -
B is the set of brokers

and L is the set of bidi-
rectional overlay links con-
necting brokers together. We
represent a link between two
brokers b1, by € B as (b1ba).
Moreover, we represent a path (composed of one or more
adjacent links) used to send information from broker b, € B
to broker b, € B as by — by. We use the notation
b1 <> by when we do not need to specify the direction of
the communication. We write by — by — by to specify
that the path between b; and b, includes broker bs. Since
we are considering a tree topology, we always have a unique
simple path (i.e., a path that does not have repeated brokers)
between every two brokers by, b2 € B. We define the set IV,
of neighbors of a broker b € B as the set of brokers directly
connected to b through a link [ € L. Each client ¢ € C'is
connected to a single broker b € B at any point in time. We
call C the set of clients connected to b.

| Broker || Broker || Broker

Figure 1: Architecture of a
pub-sub system

The architecture of brokers. Figure 1 shows the abstract ar-
chitecture of a broker b € B. We consider three layers: from
the bottom, the Network Layer handles the network
connections with other brokers and clients and manages the
low level communication details. It is used by the Overlay
Layer, which keeps information about the overlay network,
i.e., about links and neighbors. The Overlay Layer hides
the Network Layer to the Routing Layer, which
is responsible for processing and forwarding events and
subscriptions. The Routing Layer uses the Routing
Table to store information about the subscriptions received
from other brokers and local clients. In some pub-sub models
the information stored in the Routing Table is the same
for all brokers. In others each broker stores in its Routing
Table only those subscriptions that concern itself and its
direct neighbors. Our approach does not impose a specific
format for events and subscriptions: it works both with a
topic-based and with a content-based model [10]. We call
S the set of all possible subscriptions and E the set of all
possible events. Each client ¢ € C specifies its interests by
providing a (possibly empty) set of subscriptions S.. We
assume a matching function is defined as M : E x S —
{1,0}. Given an event e € E and a subscription s € S, M
returns 1 if e matches s and O otherwise. An event e has
to be delivered to every client ¢ € C such that 3s € S,
— M(e,s) = 1. Our reconfiguration primitives operate at
the Overlay Layer, by modifying the links in L. They

are designed to be generic and work with different routing
protocols. Moreover, they are completely transparent for the
Routing Layer, which is not aware of the changes in the
overlay. To achieve this transparency, our primitives require
to access and modify the information stored in the Rout ing
Table. We model this behavior in Figure 1, by allowing
the Overlay Layer to read and write from the Routing
Table. As we will better show in the following, depending
on the specific routing protocol adopted, it may be possible
to exploit the information stored in the Routing Table
to optimize some reconfiguration primitives.

III. BACKGROUND AND MOTIVATION

This section revises related approaches, motivating the
need for our contribution.

Existing solutions. Based on the analysis performed on
the literature, we present some classification criteria for
reconfiguration existing strategies.

Assumption on Topology. This criterion specifies the as-
sumptions made by the reconfiguration algorithm on the
structure of the topology. It can assume a specific structure
that can be cyclic (a generic graph) or acyclic (a tree), or
it can make no assumption on such structure. Algorithms
assuming a specific structure can rely on it to support the
reconfiguration procedure; however, they have to guarantee
that the structure is kept also after each reconfiguration. On
the contrary, algorithms that make no assumptions have to
rely on redundant approaches for transmitting reconfigura-
tion messages (e.g., gossiping) but do not have to worry
about causing possible disruptions to the topology structure.

Locking Strategy. A reconfiguration process may lock a
subset of the brokers, preventing them to participate in
other reconfigurations. This locking strategy specifies which
brokers are locked by a reconfiguration process, and so
the maximum number of reconfigurations that can occur
concurrently. We distinguish among four kinds of strategies:
(i) Global: the reconfiguration locks all the brokers in B.
(ii) Path: the reconfiguration locks two brokers p and ¢ in
the system, plus all the brokers included in the path p < q.
(iii) Local: the reconfiguration only locks one broker, plus
at most a subset of its neighbors that are involved in the
topological changes. (iv) None: the reconfiguration does not
lock any broker.

Impact on fault tolerance. The use of reconfiguration
may provide the pub-sub infrastructure with a level of fault
tolerance that is different w.r.t. the one offered in the absence
of reconfiguration. We classify this aspect in the following
way: (i) Weak, in which the level of fault tolerance in
terms of damage to the topology and its traffic is lower
during the reconfiguration. Weak fault tolerance means that
during a reconfiguration the whole system becomes more
vulnerable to faults. (ii) Standard, in which the level of
fault tolerance in terms of damage to the topology and its
traffic during the reconfiguration is equivalent to the one the
middleware has when it is not performing a reconfiguration.



Standard fault tolerance means that during a reconfiguration
the whole system does not become more vulnerable to faults.
(iii) Strong, in which the reconfiguration increases the level
of fault tolerance of the system.

Guaranteed Delivery. For each event e € F, we define the
set of clients interested in e as C. C C' = {c e C | Is €
Se,M(e,s) = 1}. A reconfiguration provides guaranteed
delivery iff e is eventually received by all clients in C..

No Duplicated Delivery. Given an event e € E and the set
C. of clients interested in e, a reconfiguration exhibits no
duplicated delivery iff each client ¢ € C, receives e at most
once. If a system provides both guaranteed and no duplicated
delivery, we say that it provides exactly once delivery.

Ordering Guarantees. Given two events ej,es € E pro-
duced by a publisher client p € C one after the other (e;
first and then e5), and the set of clients interested in both
events Ce, ¢, = Ce, NC.,, a reconfiguration exhibits FIFO
ordering guarantee iff fe e Ce, ¢, such that c receives event
eo before event e;. A stronger guarantee is called causal
ordering guarantee and is defined as follows: consider two
events ej,e; € E the set of clients Cg, ., interested in
both e; and es. A reconfiguration exhibits causal ordering
guarantee iff, when e; happens-before. es, then Ac e Ce, es
such that ¢ receives ey before e;.

Minimal delay. Consider two brokers p,q € B. Let us
define Lat,,, called average latency of the path p <+ g, as
the average time for sending publications or subscriptions
from p to g. If we denote with Lat,, the latency of the path
before the reconfiguration, with Lat,,, the maximum latency
of the path during the reconfiguration, and with Lat,, the
latency of the path after the reconfiguration, then the re-
configuration algorithm satisfies the Minimal delay property
iff Laty, < max(Laty,, Lat,,) for all possible p,q € B
under the following two assumptions: (i) the latency added
by operations that are not controlled by the reconfiguration
algorithm (e.g., the updates to the Routing Tables) are
not considered in the calculation of the latencies; (ii) the
bandwidth of the path p <+ ¢ is not significantly reduced
by the overhead added by the reconfiguration protocol. We
will measure this overhead for our approach in Section VI,
showing that it is negligible. Intuitively, the Minimal delay
property is satisfied by algorithms that do not block the
forwarding of publications and subscriptions during the
reconfiguration.
Table I: Classification of Reconfiguration Algorithms

Guarantees
) Lock Guar No Order Min
Algorithm Top Strat Fault Tol Del II)’:]I) Guar Del
Picco [22] T Path Stand. v v Causal
Baldoni [1] T Path Stand. v v Causal
Parzyjegla [21] T Local Stand. v v Causal
Dubois [9] T Local Stand. v v Causal
Yoon [24] T Local Stand. v v Causal
Bhola [3] C Global Stand. v v None
Kim [15] U Global Stand. None v
Loulou [16] C Local Stand. v None v
Guo [12] U None Strong 7 None 7

Why a New Approach?. Table 1 summarizes all relevant
approaches we are aware of that implement a solution to the
execution phase of our self-adaptation loop. Each approach

is named by the last name of its first author. We immediately
observe that none of the existing proposals is able to satisfy
all the four guarantees we have identified (last four columns).

The works in [22], [1], [21], [9], [24] fulfill all the
guarantees under classification, except for the minimal delay
property. All these works use a tree-based topology with dif-
ferent reconfiguration strategies and standard fault tolerance.
The reason why the minimal delay property is violated is
because their locking mechanisms are implemented in such
a way that the traffic generated during a reconfiguration is
stored in a queue until the reconfiguration is completed.
Locking the traffic will then result in a delay increase for
delivering events. The works in [3], [15], [16], [12] make
less strict assumptions on the topologies, therefore they
may not need to lock the traffic on reconfiguring brokers
because they can use alternative paths for forwarding events.
However, the cost for such flexibility is the loss of ordering
guarantee in the delivery of events. Indeed, unstructured
overlays fail to provide guarantees on the delivery and
on the ordering without proper more complex end-to-end
mechanisms.

The approach we are proposing in this paper relies on a
structured graph topology on top of which trees are used to
deliver events, with a standard level of fault tolerance, and
a local reconfiguration strategy. In the following we show
that our work is currently the only one that, under a proper
set of assumptions discussed in the next section, ensures at
the same time guaranteed and no duplicated delivery, causal
ordering, and minimal delay.

IV. RECONFIGURATION PRIMITIVES

This section presents our reconfiguration primitives
in detail. They consider a tree topology, and trans-
form it into a new tree topology'. The primitives are:
(i) SwapLink (a,b,c) Given three brokers a, b, and
¢, such that a,c € N(b), it removes the link con-
necting a and b, and creates a new link connecting
a and c. (ii) AddBroker (a,b) Adds a new broker
b to the overlay network, connecting it to broker a;
(iii) RemoveBroker (b) Removes a broker b from the
overlay network.

For ease of exposition, we focus on the brokers involved
in each reconfiguration and model all the others connected to
any of them, let us say b, as a virtual broker B; connected
through a link (bB;). We use the term reconf message to
indicate the messages used by our reconfiguration primitives
that work at the Overlay Layer. Conversely, we call
pub-sub messages the messages (i.e., events and subscrip-
tions) handled at the Routing Layer.

Assumptions. Our primitives rely on the following assump-
tions: (i) brokers and links do not fail; (ii) links are FIFO,
(iii) brokers process and forward reconf messages in the
order in which they are received. The first two properties

1Our approach can be trivially extended to generic structured topologies
that use multiple trees for the delivery of events, by applying the primitives
independently on each of these trees in a compositional way.



are inherited from tree-based pub-sub systems [10], while
the last one ensures FIFO ordering of reconf messages
along arbitrary paths (composed of one or more links);
moreover, it ensures that FIFO ordering is preserved between
a reconf message and pub-sub messages flowing over the
same path. On the contrary, we do not impose any limitation
in the order in which pub-sub messages are processed. For
example, brokers may process different events in parallel to
increase performance: in this case they may not preserve
FIFO ordering of events over multi-hop paths.

A. SwapLink

As shown in Figure 2, the SwapLink (a,b,c) primitive
considers three brokers, a,b,c € B, such that broker b is
initially connected to both @ and ¢, i.e. a,c € N(b). Since
we consider tree topologies, there is no link connecting a
and ¢, i.e., ¢ ¢ N(a). The primitive removes the link (ab)
and adds a new link (ac). In other words, it removes a from
the neighbors of b and adds it to the neighbors of c.

After creating the new link, SwapLink has to introduce
4 changes in the paths used to route pub-sub messages: (i)
pub-sub messages forwarded from a to c use the new link
(ac); (if) the same holds for pub-sub messages moving from
c to a; (iii) pub-sub messages from a to b are now forwarded
through c using the path a — ¢ — b; (iv) similarly, pub-
sub messages from b to a use the path b — ¢ — a.
Before describing SwapLink in detail, we introduce the
ChangePath procedure. It ensures that events are received
by the reconfiguring brokers in a FIFO order. This is impor-
tant to ensure that the guarantees offered by the Routing
Layer are not altered by the reconfiguration.

(a) Before reconfiguration (b) After reconfiguration

Figure 2: SwapLink: nodes involved
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The ChangePath procedure. All the changes of paths
adopted in our primitives involve three brokers. In this
specific situation, there are two ways for changing a path
x — y between two brokers x,y € B: moving from the use
of the link (xy) (see Figure 3b) to a path x — z — y that
involves a third broker z € B (see Figure 3a), and viceversa.
Our ChangePath procedure addresses both cases.

Figure 4a shows the reconf messages exchanged for
moving from © — z — y to {(xy): before start using
the new path, broker = sends a close (xzy) message
on the old path, to notify y that it will not receive other
pub-sub messages from that path. This is guaranteed by
the assumptions on FIFO links and ordered processing of
reconf messages w.r.t. pub-sub messages. When z starts
sending pub-sub messages using the new channel (xy),
y may receive pub-sub messages from the new channel
while other (previous) pub-sub messages are still flowing
through the old channel. y stores these pub-sub messages
in a temporary queue until it is sure that no more pub-
sub messages are coming from the old channel, i.e., until it
receives the close (xzy) . This ensures that the Rout ing
Layer receives all the pub-sub messages from the old path
before starting to receive those coming from the new one.
If the pub-sub system ensures FIFO ordering of pub-sub
messages over arbitrary paths, this property continues to hold
during the reconfiguration.

Figure 4b shows the exchange of reconf messages for
changing the communication channel from (xy) to z —
z — y. In this case, we need to notify z about the change,
asking it to route pub-sub messages from x to y. To do so,
x sends an open (xzy) message to z. As in the previous
case,  also sends a close (xy) message to y, which is the
last one to travel through the old channel (i.e., (zy)). Also in
this case, the Overlay Layer of broker y starts delivering
pub-sub messages coming from the new channel to the
Routing Layer only after it receives the close (xy),
thus ensuring that the procedure does not violate the ordering
assumptions done by the pub-sub system. Notice that y may
receive from z both pub-sub messages that are coming from
2 and messages that are coming from other sources, e.g., the
ones generated by the clients of z. These last ones do not
need to wait for the close (xy) message to be processed,
and can be delivered to the Routing Layer immediately.
Thus, to let y distinguish between the two cases, broker z
marks the messages from z with a special flag. The last
close (xy) message notifies broker z that it can safely
stop to flag pub-sub messages forwarded from =z, since
broker y has already received the close (xy) message.

The SwapLink primitive. We are now ready to describe
the SwapLink (a,b,c) primitive. Figure 5 shows the re-
conf messages exchanged among a, b, and c. We assume
the process always starts at broker a, reserving a start
message to show the triggering of the procedure from other
nodes.

Each broker has an associated State, which defines
its behavior. A broker in State 0O is not involved in
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Figure 5: SwapLink - Reconf messages exchanged

a reconfiguration, it adopts the normal routing policy as
defined in the Routing Layer. The other states, from 1
to 3, identify different steps of the reconfiguration process.
When a broker is in one of these states the routing policies
can be altered by the Overlay Layer. Figure 5 shows
the exact point in time in which a broker enters a new state
(labels 0, 1, 2, and 3). Intuitively, the SwapLink primitive
performs the following steps:

o It locks the three brokers involved in the reconfigura-
tion, making sure that they are not already participating
in another reconfiguration process.

o It creates the new link (ac). Each reconfiguring broker
forwards pub-sub messages to the other two: duplicates
are avoided by marking pub-sub messages with a
special flag.

o It forwards the information required to update the
Routing Table to correctly forward pub-sub mes-
sages after the reconfiguration.

o It removes the link (ab) and starts adopting the new
routing policies. Finally, it unlocks the brokers, which
become ready for other reconfigurations.

In the following we provide details on the above steps.

State 0. As a result of the start message, broker a sends
a lock message to b, asking it to lock for a reconfiguration
involving c. If b is already locked in another reconfiguration,
it replies with a lockNack that immediately stops the
process. Otherwise, it forwards the 1ock to c. Depending
from the fact that it is free or already locked, c replies with
a lockAck or lockNack that b forwards to a.

State 1. When a (non locked) broker sends or receives a
lock message, it moves to State 1. From this state, it
continues to use the previous routing policies, but is not able
to accept other requests for reconfiguration. When ¢ moves
to State 1, it also creates the new overlay link (ac).

State 2. When broker c has finished creating the overlay link
(ac), it moves to State 2. When the other two brokers
a and b receive a lockAck message, they move also to
State 2. When in State 2 any broker z € {a,b,c}

considers the new link (ac) as open. Thus, upon receiving a
pub-sub message e from a sender s, it behaves as follows:

o If s is not one of the brokers under reconfiguration,
ie. s ¢ {a,b,c}, x forwards e to all non reconfiguring
brokers using the previous routing policies. Moreover,
it sends e to both reconfiguring brokers, marking it with
a special flood header.

o If s € {a,b,c} and e does not have the flood header,
then the sender was not yet in State 2 when it
delivered e. Broker x processes e using the previous
routing policies.

e If s € {a,b,c} and e has the flood header, then the
sender was in State 2 when it delivered e. Broker x
removes the header from e and processes it using the
previous routing policies, but it does not forward e to
the other brokers involved in the same reconfiguration.

Intuitively, following this procedure, old pub-sub mes-
sages (from brokers in State 1) are forwarded using
the old routing policies; new pub-sub messages (from bro-
kers in State 2) are forwarded to both reconfiguring
neighbors only once, thus avoiding duplicates. There are
a few things to note. A reconfiguring broker in State 2
forwards pub-sub messages coming from external brokers
to both reconfiguring neighbors. This does not change the
communication paths of pub-sub messages coming from b,
but it changes the paths @ — ¢ and ¢ — a, using the
new link (ac). To realize these two changes of path, we
make use of the ChangePath as described in Figure 4a.
The ChangePath (from ¢ — b — a to {(ca)) is realized
with a close (cba) message sent in (cb) and in (ba). The
ChangePath (from a — b — ¢ to (ac)) is realized with a
close (abc) message sent in (ab) and in (bc).

State 3. When a broker sends or receives a swap message,
it moves to State 3. Routing is performed as in State
2; the swap messages are used to ensure the reconfiguring
brokers that the transition to State 2 has ended every-
where. Accordingly, a broker in State 3 cannot receive
pub-sub messages from brokers in State 1. Depending on
the specific routing protocol adopted by the system, brokers
may need to exchange information about subscriptions to
correctly populate the Routing Table and support the
new topology after the reconfiguration. If needed, we embed
this information inside swap messages. The information
stored in the Routing Table of each node has another
implication: in protocols that provide every broker with a
global knowledge about the subscriptions of the network,
we can exploit this information to optimize the delivery of
pub-sub messages in State 2 and State 3. In particular,
in the case of publications, reconfiguring brokers can filter
events instead of flooding them, thus avoiding the propaga-
tion of unneeded events among reconfiguring brokers.

State 0 (new configuration). After receiving a swap
message, a broker has all the information required to adopt
the new routing policies. This already happens for the
communication between a and ¢, which uses the new link



(ac). We now need to close the link (ab) (done by broker a)
and start using the new paths a - ¢ — band b = ¢ — a.
This is implemented through two ChangePath procedures,
as shown in Figure 5. The ChangePath (from (ab) to a —
¢ — b) is realized with an open (acb) sent in (ac), and a
close (ab) sent in (ab) and in (bc). The ChangePath
(from (ba) to b — ¢ — a) is realized with an open (bca)
message sent in (bc), and a close (ba) message sent in
(ba) and in (ac). We save a reconf message by combining
the close (ab) and the open (bca) messages sent from
b to c. When a broker enters State 0, it completely adopts
the new routing policies; from this moment on, it is unlocked
and free to participate in other reconfigurations.

B. AddBroker

As shown in Figure 6, the AddBroker (a,b) primitive
increases the size of the overlay network by adding a
new broker b and connecting it to an existing broker a
through a link (ab). The exchange of reconf messages
defined by the AddBroker primitive is shown in Figure 7:
broker b sends a connect message to a and receives a
connectAck back. Only after receiving this message, b
considers the link (ab) as open. The primitive does not
change the original connection between a and the remaining
part of the overlay (i.e., B,). Moreover, it does not impact
on the routing protocols being used: indeed, b is connected
through a single link (ab) and does not have local clients
(Cp, = (). Accordingly, there is no traffic flowing along
the link (ab) until some client is connected to b and starts
to generate traffic. The AddBroker primitive does not
lock broker a: in other words, multiple brokers may start
connecting to a concurrently. On the contrary, broker b
becomes available for another reconfiguration only after the
process of connecting it with broker a is complete, i.e., after
receiving the connectAck message.

There are two reasons for adding new brokers: to serve
future clients or to perform some form of load balancing.
Protocols for moving clients have been already addressed in
the literature [13] and are outside the scope of this paper.
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Figure 6: AddBroker: nodes involved
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Figure 7: AddBroker - Reconf messages exchanged
C. RemoveBroker

The RemoveBroker (b) primitive removes a broker
b € B from the overlay. As shown in Figure 8, the
primitive requires b to have a single neighbor, represented
as a. It removes the link (ab), preserving all the other

E—) E—)
&) o] ®

(a) Before reconfiguration (b) After reconfiguration

Figure 8: RemoveBroker: nodes involved
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Figure 9: RemoveBroker - Reconf messages exchanged

links in the overlay network, modeled through B,. The
RemoveBroker primitive works even when Cj, # () and
moves every client ¢ € Cp to broker a. As for the other
primitives, it preserves guaranteed delivery, no duplicated
delivery and causal order of pub-sub messages. To do so,
however, it requires some logic to be deployed inside the
clients.

Figure 9 shows the exchange of reconf messages gen-
erated by the RemoveBroker primitive. Without loss of
generality, we assume the process starts at b: as for the
SwapLink primitive, we reserve a start to force the pro-
cess from other brokers. Broker b first sends a removeReq
message to a, which contains the identifier (e.g., the network
address) of all the clients in Cy. If C, = (), b is removed from
the overlay network and the process terminates. In the case
Cy # 0, a uses the identifiers of the clients in C to contact
them, sending a connect message. From this moment, the
clients stop sending pub-sub messages to b and start sending
them directly to a. The subsequent reconf messages realize
two ChangePath procedures, the first one changing the
communication path from the clients in Cp to a, and the
second one changing the communication path from a to
the clients in Cjp, without loss of pub-sub messages (see
Section V, property 3).

V. ANALYSIS OF THE PRIMITIVES

This section provides a detailed analysis of our primitives.
In particular we give proofs or intuitive explanations for the
capability of the primitives to have the following properties.

Property (1). “The primitives transform tree topologies into
tree topologies.”

SwapLink case. Consider the brokers involved in the
SwapLink primitive, reported in Figure 10a. In this figure
the overlay is represented divided into three interconnected
subtrees ({a, B,}, {b, By}, and {c, B.}), where a,b, c are
the reconfiguring brokers and B,, By, B, represent external
brokers that are (directly or indirectly) connected to them.

(a) Before reconfiguration (b) After reconfiguration

Figure 10: Brokers involved in a SwapLink process



If we remove the link {ab), we are partitioning the original

tree into two subtrees. The first one includes nodes a and
By; let us call it T,,. The second one includes nodes b, By,
¢, and B; let us call it Ty.. If we merge again T, and T,
using the new link (ac) (see Figure 10b), we obtain a tree
topology again. Indeed, we know from the graph theory that
joining two trees through a single link produces another tree.
AddBroker case. From the graph theory we know that a
graph G = (B, L) is a tree if and only if it is connected
and |L| = |B| — 1. Now assume we have a topology with
n brokers (|B| = n) and n — 1 links (|L| = n — 1). The
AddBroker primitive adds one broker b and one link,
obtaining n + 1 brokers and n links. Moreover, the new
graph is connected since the new link connects b to the
(connected) graph G.
RemoveBroker case. Similarly, the RemoveBroker
primitive removes one broker b and one link. Accordingly,
it generates a new graph G = (B, L) where |B| = |L| — 1.
G is connected, since b was a leaf in the original graph.
Hence, G is a tree.

Property (2). “The primitives transform a tree topology to
every other tree topology (after a finite number of recon-
figurations).” A formal demonstration of this property can
be found in [24], where the authors provide primitives for
adding and removing brokers and for swapping links that
result in topology transformations that are equivalent to the
ones we propose. Even if the cited work enables the same
transformations as our primitives, it is not able to exhibit
the other guarantees we offer.

Property (3). “The primitives preserve guaranteed delivery,
if it is offered by the pub-sub system.” If the pub-sub
middleware ensures guaranteed delivery through end-to-end
mechanisms (e.g., through retransmission), then the property
is maintained. Indeed, these mechanisms are built on top of
the Routing Layer and are independent from the way in
which pub-sub messages are routed and processed. On the
contrary, some pub-sub system ensures guaranteed delivery
by enforcing it at every link of the overlay network. We now
analyze this case, showing that our primitives do not dirsupt
guaranteed delivery.

SwapLink case. In the SwapLink primitive, all the bro-
kers in State 0 and State 1 follow the existing routing
policies; if the system offers guaranteed delivery, it still
does during this reconfiguration. Brokers in State 2 and
State 3 send all pub-sub messages to both reconfiguring
neighbors; therefore, no pub-sub message can be lost.
AddBroker case. The AddBroker primitive consists in
the insertion of a single broker. Until the new link is finally
activated, there is not traffic of pub-sub messages flowing
through it. Existing clients are served by the brokers already
present in the overlay network, adopting existing routing
policies. Therefore, no pub-sub message can be lost.
RemoveBroker case. The RemoveBroker primitive
consists in the removal of a broker b. In our approach every
client ¢ € (Y, initially connected to b, moves to a broker a

before the link (bc) is invalidated. Therefore, ¢ can continue
to use the previous path for sending pub-sub messages until
it is available. c also receives all pub-sub messages, because
they all flow through a, which stops forwarding them to b
only when a connection with each client in C} is established.

Property (4). “The primitives preserve no duplicated de-
livery, if it is offered by the pub-sub system.” Similarly to
Property (3), if the middleware offers this property using
end-to-end mechanisms that do not make any assumptions
at the Overlay Layer, our primitives do not interfere
with them, since they work at a higher layer. We now show
that our approach does not disrupt no duplicated delivery by
avoiding duplicates at the level of links or paths.
SwapLink case. In the SwapLink primitive, all the bro-
kers in State 0 and State 1 follow the existing system
routing policies; therefore, if the system offers no duplicated
delivery, it still does during the reconfiguration. All brokers
in State 2 and State 3 send all pub-sub messages
to both reconfiguring neighbors, but with a special flood
header that inhibits the reforwarding to other reconfiguring
neighbors; therefore, no pub-sub message can be duplicated.
AddBroker case. There is no traffic of pub-sub messages
during the reconfiguration because the new broker has no
clients, therefore no pub-sub message can be duplicated.
RemoveBroker case. In the RemoveBroker primitive
(using the client migration approach proposed in Sec-
tion IV), a client ¢ € (Y is moved from a broker b to a broker
a. It sends pub-sub messages only once, either to b, before
the reconfiguration, or to a, after the reconfiguration. Thus,
no pub-sub messages coming from c can be duplicated.
All the pub-sub messages that have to reach c are routed
by broker a both before and after the reconfiguration takes
place. It is broker a that decides, atomically, when to start
serving ¢ using the link (ac). a never routes a pub-sub
message twice, so no pub-sub message can be duplicated.

Property (5). “The primitives preserve FIFO and causal
ordering guarantees, if they are offered by the pub-sub
system.” As in Property (3) and (4), we preserve this
property if it is offered using end-to-end mechanisms. On
the contrary, it is possible that the pub-sub system ensures
ordering among pub-sub messages by enforcing them at the
level of paths. As demonstrated in [23], [14], the use of a
tree-topology and a FIFO order over paths is sufficient to
provide both FIFO and causal order for end-to-end pub-sub
message delivery. Starting from this premise, we show that,
if the pub-sub system offers FIFO order among paths, our
primitive does not disrupt it.

FIFO order over paths is preserved during reconfigurations.
SwapLink case. Consider the SwapLink (a,b,c) primi-
tive. In Figure 11, we consider the three brokers a,b,c € B
under reconfiguration, and three external brokers z,y,z €
B, connected (directly or indirectly) with a, b, and c,
respectively. We want to show that the paths z <> y, y <> 2,
and z < z preserve the FIFO ordering also during the
reconfiguration process. This is trivially true for the path



y <> z, since it does not change during the reconfiguration
(it continues to use the link (bc)).

Links Links
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(a) Before reconfiguration (b) After reconfiguration

Figure 11: Causality is preserved during the swapLink

On the contrary, the paths * <> y and = <> z stop
using the link (ab) and start using the link (ac). These two
steps are performed sequentially, one after the other by the
SwapLink primitive: it first adds the link (ac) and uses it
to route the communication between a and c. To ensure that
previous pub-sub messages flowing through b are delivered
in order, this process is implemented by two ChangePath
procedures, one realized through the lockAck messages
and one realized through the first two swap messages.
After that, the SwapLink primitive removes the link {(ab),
previously used for the communication between a and b.
Also in this case the process is implemented through two
ChangePath procedures, which preserve FIFO ordering
of pub-sub messages during the reconfiguration.
AddBroker case. In this case there is no traffic of pub-sub
messages during the reconfiguration, therefore any assump-
tion on the order of pub-sub messages is preserved.
RemoveBroker case. In the case of removing a broker
we preserve ordering by using the ChangePath procedure,
which guarantees FIFO ordering during the reconfiguration.

Property (6). “The primitives do not introduce delays in the
delivery of pub-sub messages, if we consider negligible the
bandwidth used to transfer reconf messages.” Let us denote
Lat, Lat, and Lat* the latencies of an pub-sub message e
that traverses a link connecting two reconfiguring brokers
respectively before, after, and during a reconfiguration. We
want to show that Lat* has a value between Lat and Lat,
assuming that the link bandwidth is not affected by the traffic
of reconf messages.

We first show that the property holds when the
ChangePath procedure is applied. The ChangePath
procedure changes the communication path between two
brokers a,b € B. Let us call a — b the path before
the procedure takes place and a — b the path when the
procedure ends. The latency for sending a pub-sub message
e over a — b is Lat, while the the latency for sending e over
a — b is Lat. Broker b always processes pub-sub messages
as soon as it receives them from one of the two paths. The
only exception is the first pub-sub messages received from
a — b, which are stored until a c1ose message is received
from a — b. The close message, however, is sent before
a starts using the new channel a — b, and takes Lat to be
received by b. Accordingly, stored pub-sub messages start
to be processed at most Lat after the time they are sent by
broker a. This shows that the ChangePath procedure does
not add any overhead: the latency Lat* is always bounded

by Lat and Lat. We can now show that the property holds
for our primitives.

SwapLink case. The SwapLink primitive does not intro-
duce any mechanism that prevents the traffic from being
routed. The only exception is represented by the appli-
cation of the ChangePath procedure, which does not
introduce any overhead, as shown above. Moreover, during
the reconfiguration, the traffic uses either the paths adopted
before the reconfiguration, or the paths adopted after the
reconfiguration. It follows that the latency Lat*, under our
assumptions, is always bounded by the latencies before and
after the reconfiguration, i.e., Lat and Lat.

AddBroker case. The property trivially holds since all
pub-sub messages are routed over the same paths before,
after, and during the reconfiguration.

RemoveLink case. Similarly to the SwapLink primitive,
there is no mechanism that prevents the traffic from being
routed. In the case of client migration, there is just the
adoption of the ChangePath procedure, which, as shown
above, does not introduce any overhead. Therefore also in
this case the latency Lat* is always bounded by the latencies
before and after the reconfiguration.

Remarks on the negligible bandwidth assumption. To
show that our approach does not introduce additional delay
w.r.t. a non-reconfiguring system we are assuming that re-
conf messages consume a negligible quantity of bandwidth.
We will see from the experiment in the next Section that
this tends to be true also in the reality. However, depending
on the routing protocol adopted and on the actual load
of the system, there may be situations in which the cost
for exchanging the information needed to complete the
reconfiguration (e.g., portions of the Routing Tables
of brokers) may reduce the bandwidth available for pub-
sub messages. In this case the effect of a bandwidth re-
duction can result in an additional time for the delivery
of events, and therefore an additional delay experienced
by the clients. However, these modifications depend on the
specific Routing Layer adopted, therefore it is out of the
control of any reconfiguration approach (including ours). In
all the cases in which brokers have only local knowledge
about subscriptions (e.g., [7]), an update operation on their
subscription information cannot be avoided.

VI. EVALUATION

The aim of this evaluation is to measure the overhead of
our primitives. Other performance metrics (e.g., scalability)
depend on the specific routing protocol and self-adaptive
logic adopted. We implemented and tested our primitives
into the ProtoPeer simulator [11]. Since several parameters
of the pub-sub system may impact the performance of our
solution, we designed a default scenario and then changed
one parameter at a time. Our default scenario includes 100
brokers and 100 clients. We kept the ratio of clients and
brokers fixed in all the scenarios we tested. We always
consider 50% of pure forwarders, i.e., brokers without
any client attached. Clients are uniformly distributed over



the remaining brokers. The latency of links is uniformly
distributed between lms and 5ms. Each client issues 10
different subscriptions, each of them capturing 0.1% of
published events, on the average. Moreover, each client pub-
lishes one event every 750ms. We consider a fully content-
based pub-sub systems, in which events are represented as
attribute-value couples and subscriptions define constraints
on the value of attributes. With an average size of 5 attributes
per event and 5 constraints per subscription, the average size
of the packets flowing in the network is 0.76KB for events
and 0.77KB for subscriptions.

The values of the parameters for the default scenario have
been chosen in such a way to represent a medium-scale
system. We explore the impact of parameter variation w.r.t
such scenario and report here the most significant findings.
For each test, we perform 100 reconfigurations and we
measure the average traffic overhead generated by a single
reconfiguration. The reconfigurations have been generated
both using a random algorithm and using our self-adaptive
algorithm described in [9]. The results are identical in the
two cases, which further demonstrates the transparency of
our primitives w.r.t. the specific self-adaptation policy.

SwapLink. We first analyze the SwapLink primitive. We
consider two separate cases: (i) every broker has a complete
knowledge about all the subscriptions of the network. In
this case there is no need to propagate information about
subscriptions during the reconfiguration; (ii) every broker
has only a partial (aggregated) view of subscriptions, as in
the subscription forwarding protocol [7]. In this case, the
reconfiguring brokers need to exchange some information
about the subscriptions they hold.

Default scenario. We first measure the overhead of the
SwapLink primitive in the default scenario. Figure 12a
shows the traffic overhead when subscriptions do not need to
be propagated. First of all, we notice that the total overhead
introduced by a single reconfiguration is very low (below
0.25 KBytes). All the kinds of reconf messages participate
with a similar cost; in particular, since swap messages do
not have to carry information on subscriptions, their total
weight is comparable to those of the other messages. Finally,
the complete knowledge of subscriptions allows brokers to
avoid useless forwarding of publications (pub in Figure 12a)
during the reconfiguration phase.
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Figure 12: Default scenario
Figure 12b shows the traffic overhead including the
propagation of subscriptions. Notice the use of the log-
arithmic scale to represent the large differences between
the different types of messages. In particular, the swap

messages, which include information on subscriptions, are
the main sources of traffic, contributing for more than
99% of the total weight. In our default scenario, the
total cost of a reconfiguration is slightly above 1MB.
Notice that the amount

of information exchanged 2 s
within the swap messages £ 10*| " S0be oxchanse ~ -
depends on the specific g 132 XX
Routing Layer g 10(‘)
adopted and is out of the & % E—— -

= 1 10 100

control of our primitives.
Accordingly, they would
be required by every other
reconfiguration approach
performing the  same
topological change.

Number of subscriptions

Figure 13: Number of sub-
scriptions per client

Number of subscriptions. Figure 13 shows the behavior of
the SwapLink primitive when the number of subscriptions
per client increases. As expected, the number of subscrip-
tions only influences the performance of the primitive when
the Routing Layer requires to exchange information on
subscriptions. In this case, the overhead increases linearly
with the number of subscriptions. Interestingly, this happens
up to a certain (small) threshold (about 100 subscriptions
per client with our default parameters), while after this limit
the overhead remains almost constant. In this case, indeed,
subscriptions start to overlap with each other, so that the
amount of information moved from broker to broker does
not increase further.
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Figure 14: Number of bro-
kers in the network

Figure 15: Period between
publications

Number of brokers. Figure 14 shows the traffic overhead
of the SwapLink primitive when increasing the number
of brokers in the overlay network. When increasing the
size of the network, we also increase the number of clients
accordingly. As a consequence, also the overall number of
subscriptions in the network increases: as Figure 14 shows,
this impacts on the traffic overhead, which increases with the
number of brokers and exhibits a behavior that is similar to
the one already observed in Figure 13.

Delay between publications. We now consider how the
traffic overhead generated by the SwapLink primitive
changes with the average delay between two subsequent
publications of a client. Without changing other parameters,
the delay between publications only influences the num-
ber of additional flooded events exchanged during State
2 and State 3. If the routing protocol provides each
broker with a complete knowledge about the subscrip-
tions in the network, there is sufficient information to



correctly filter events without generating additional traffic.
Figure 15 shows the over-

head generated by publi- 2
cations when the routing &
protocol does not provide 8
each broker with the in-
formation required to cor- =
rectly filter all the events
received during the recon-
figuration phase. First of
all, we notice how this traf-
fic significantly drops when the delay between publications
increases. Moreover, this traffic is negligible if compared
with the overall overhead, which is around 1MB with our
default parameters (see Figure 12b).

AddBroker and RemoveBroker. The AddBroker primitive
only involves the creation of a new connection, and does
not produce any traffic overhead in the existing network.
On the contrary, the RemoveBroker requires a transfer of
subscriptions between the removed broker and its connected
neighbor. Figure 16 shows the overall traffic overhead gen-
erated by the RemoveBroker when changing the number
of subscriptions of each client. All the remaining parameters
are specified as in the default scenario. Without considering
the cost of moving subscriptions, the overhead of the prim-
itive is constant and equal to 0.11KB. As expected, the cost
increases linearly with the number of subscriptions of each
client, reaching more than 10MB when each client provides
10000 subscriptions. Once again, we transfer the minimum
amount of information required for the routing of events,
so this overhead is common to all reconfiguring approaches
performing the same operation.

10 100 1000 10000
Number of subscriptions

Figure 16: RemoveBroker

VII. CONCLUSIONS

This paper presents three generic and transparent overlay
reconfiguration primitives for pub-sub systems that enable
modifications in the overlay topology that are transpar-
ent to clients. These primitives can be used to realize
the execution phase of a self-adaptation loop in a self-
organizing middleware that is independent (i) from the
monitoring/analysis/plan phases of the self-adaptation logic
(if) from the routing protocol adopted by the system.

In the future, we plan to extend these primitives to a
wider class of self-adaptive pub-sub systems such as the ones
that use unstructured topologies or the ones that require a
stronger fault-tolerance pub-sub middleware.
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