
Towards an Engineering Methodology for
Multi-Model Scientific Simulations
Alessandro Margara∗, Mauro Pezzè∗† Igor V. Pivkin∗ and Mauro Santoro∗

∗Università della Svizzera italiana (USI), Lugano, Switzerland
†University of Milano Bicocca, Milano, Italy

Email: {alessandro.margara, mauro.pezze, igor.pivkin, mauro.santoro}@usi.ch

Abstract—Complex physical phenomena are characterized by
sub-systems that continuously interact with each other, and that
can be modeled with different computational models. To study
such phenomena we need to integrate the heterogeneous compu-
tational models of the different sub-systems to precisely analyze
the interactions between the various aspects that characterize the
phenomenon as a whole.

While efficient methods and consolidated software tools are
available to build and simulate single models, the problem of
devising a general and effective approach to integrate heteroge-
neous models has been studied only recently and is still largely
an open issue.

In this paper, we propose an engineering methodology to
automate the process of integrating heterogeneous computational
models. The methodology is based on the novel idea of capturing
the relevant information about the different models and their
integration strategies by means of meta-data that can be used
to automatically generate an efficient integration framework for
the specific set of models and interactions.

In this position paper we discuss the various aspects of the
integration problem, highlight the limits of the current solutions
and characterize the novel methodology by means of a concrete
biological case study.

I. INTRODUCTION

Computational science focuses on building models and anal-
ysis techniques to simulate and study complex physical phe-
nomena. Often, such phenomena are characterized by several
aspects and sub-systems. Each sub-system can be best captured
with a computational model that may substantially differ from
the models suitable to analyze other sub-systems. Models may
work at a different scale, for example, a large number of
biological systems involve physical, chemical and mechanical
processes interacting across diverse spatiotemporal scales.
Moreover, heterogeneous types of models may be required
to represent each aspect of the phenomenon under analysis,
for example, biological systems may involve continuum-based
models as well as particle-based models.

While efficient methods and consolidated software tools are
available to solve each model in isolation, devising an effective
way to integrate multiple models vastly remains an open issue.

In computational science, models are usually integrated
with ad-hoc solutions that apply only to the specific target
models. Such integration encodes a significant amount of
relevant knowledge about the models, their communication
strategies and the software and hardware infrastructure used
for simulation. However, such information remains hidden in

the implementation details of the specific solution, and thus
cannot be reused to integrate other models.

General integration strategies and middleware platforms
abstract away from application domain details that are essential
when dealing with the integration of computational models,
such as platform-dependent performance requirements that
characterize computational simulations. Thus, general solution
may not be effective in the context of computational science.

As acknowledged in the literature, a methodology to support
an efficient and seamless integration of heterogeneous models
and model simulation tools is needed to speed up, ease and
automate the integration process [1]. The recent interest of the
scientific community has led to the definition of some inte-
gration strategies and platforms [2], [3], [4]. Current solutions
often consider single aspects of the integration problem, such
as the presence of multi-scale model, or work only with some
types of models, such as particle-based models, and do not
generalize to the whole set of aspects yet.

A general integration methodology requires both a clear
definition of the interactions between the different compu-
tational models and an efficient integration of the software
tools used for simulating the different models. In particular,
it requires detailed information about (i) the format and
semantics of the data elements exchanged among the different
simulation and analysis tools, (ii) the specification of when
and how the communication of information takes place, i.e.,
the communication protocol, and (iii) the definition of how
the different tools co-exist in a coherent platform deployment,
i.e., how the different tasks are distributed and scheduled over
the computational nodes.

This is a arguably a complex task, which requires (i) a deep
understanding of the phenomenon under analysis and its mod-
eling, (ii) a precise knowledge of the computational tools and
infrastructure used for simulation and (iii) a comprehensive
vision on the different choices in terms of communication,
deployment and scheduling of computational tasks that may
significantly impact on the efficiency of the overall solution.

In this paper, we introduce a methodology for automat-
ically integrating heterogeneous computational models. The
core idea of the proposed methodology is the definition of
a suitable abstraction that captures the details required to
integrate heterogeneous models and that we defined as meta-
data. The new meta-data driven integration methodology is
grounded on three key pillars: (i) meta-data information to



describe the computational models and the aspects related to
their integration; (ii) a standardized middleware layer to enable
inter-model communication; (iii) the automated generation,
design, configuration and deployment of integrated and multi-
model simulations for the specific problem.

To meet the needs of computational multi-model simulation
and analysis, our methodology must fulfill two conflicting
requirements: (i) it has to be flexible and general, to cap-
ture different types of models and integration strategies, and
(ii) must produce efficient simulation infrastructures, with
limited overhead with respect to ad-hoc solutions. Our goal
is to find a good balance between these two requirements.

The remainder of this paper is organized as follows. Sec-
tion II surveys existing approaches to the problem of model
integration and discusses engineering issues in the definition of
a general solution; Section III presents our methodology based
on meta-data and exemplifies it using a case study from system
biology. Finally, Section IV concludes the paper presenting
current and future research directions.

II. BACKGROUND AND RELATED WORK

Currently, computational models are developed with ad-hoc
approaches, which lack mature software engineering method-
ologies and development processes [1]. Finding a suitable soft-
ware development process for computational models remains
an open problem, which requires to identify and understand
the characteristics of scientific software tools [5].

The development and integration of computational models
is vastly delegated to computational scientists that have a
deep understanding of the application domain. Computational
scientists internalize a model of software development, but
may neither realize nor make explicit the contextual factors
that make such model successful [6].

In this paper we focus on the problem of defining a method-
ology to automatically integrate heterogeneous computational
models. Devising a suitable methodology for the integration
of heterogeneous models involves finding a good trade-off
between generality of the methodology and efficiency of the
integrated simulation it produces [7].

The need for ease of development, reusability and faster
adaptation of existing solutions to new scientific problems
is driving computational scientists to the definition of new
integration strategies. The recent attempts have introduced in-
tegration frameworks, domain specific languages or integration
libraries.

The most prominent integration framework is the com-
putational solution and the software and services developed
within the MAPPER project to enable the integration of
models at different spatiotemporal scales across disciplines [2].
Some recent work [8] propose languages to abstract all the
information required to integrate models at different scales.
Several libraries and toolkits have been developed to enable
an efficient integration of either homogeneous or heterogenous
models at different scales [3], [9], [10], [11], [12], [13], [14].

Our methodology attempts to formalize the key factors that
influence multi-model integration into a coherent framework

of meta-data, by exploiting the guidelines defined by the above
contributions to devise effective integration strategies.

An orthogonal research line focuses on the definition of
a software development process for computational models.
Bartlett proposes methodologies based on the Agile develop-
ment processes to facilitate the integration of software written
by different expert groups [15].

III. A META-DATA DRIVEN METHODOLOGY

This section presents a novel approach to define an effective
methodology for the integration of heterogeneous computa-
tional models. The distinctive feature of our methodology con-
sists in introducing the concept of meta-data to capture the key
features of the models, their simulation and their interactions,
thus enabling the automated generation and deployment of an
integrated simulation.

A. Overview

Inter-Model
Communication Middleware

Models and Integration Meta-Data

Adapter…Adapter Adapter

Provides

Integrated
Simulation

Model
Data

Simulation
Tool

Model
Data

Simulation
Tool

Model
Data

Simulation
Tool

Expert

Generates

Fig. 1: Meta-data driven methodology: an overview

Fig. 1 shows the main elements that characterize our
methodology: the grey boxes represent the core components
of our methodology that interact with computational models,
data and simulation tools (white boxes).

Domain experts provide the knowledge about the models
involved in the simulation and the constraints on their inter-
actions and execution in the form of meta-data. The method-
ology standardizes the inter-model communication by means
of a communication middleware that mediates the interactions
across models and a set of adapters that enable the reuse of
simulation tools, thus enabling the automated generation of an
integrated simulation.

Models and integration meta-data.

Over the years, computational scientists have built efficient
simulation tools, each of them optimized for a specific kind
of models. In absence of an engineering methodology, the
integration of such tools is usually designed ad-hoc for the
specific problem at hand.

In our methodology, domain experts shall characterize the
models used in simulation in the form of meta-data, thus
providing the information required to integrate existing tools
within a coherent workflow. The meta-data include the follow-
ing types:



Computational models that describe each computational
model involved in the integrated simulation. In particular
the following information will be encoded within this
meta-data category: the type and scale of model adopted
–for instance, continuum-based model, particle-based
model, agent-based model and their specific spatial
temporal scale–; the content and format of the data they
consume, process and generate; the semantics of the data
they process –for instance, in a particle-based model,
the semantics specify that particles are represented using
type, position and velocity in a tridimensional space–.

Workflow that specifies how the different computational
models are organized in an execution flow that takes
into account the spatial region they cover and their time
scale. For example, two models can be simulated in
iterative steps, that is, the result of a model is used as an
input parameter for the other model in the next iteration.
The workflow also constraints the architecture of the
integrated simulation –for instance, some simulation
steps can run in parallel only if they do not depend on
each other to proceed–.

Data flow that specifies the data items that are exchanged
between models during the execution of the workflow.
For example, this can be useful to gain information on the
volume of data exchanged between models to optimize
their integrated deployment.
The data flow also defines the translation functions that
transform the data produced by one model into data that
can be understood and processed by another model –for
instance, information about particles in a particle-based
model are aggregated into continuum functions analyzed
by a continuum-based model–.

Communicating conditions that specify when the communi-
cation takes place. For example, the communication can
be interval-driven, when models exchange data after a
specified number of simulation steps, or event-driven,
when models exchange data upon specific event occur-
rences. This can be useful to gain information on the
frequency of data exchanged and on the computational
cost of each model, to optimize the allocation of the
available resources across simulation tools.

The classes of meta-data presented above should be sufficient
to fully specify the interaction between computational models.
Our methodology enables computational scientists to provide
additional meta-data to characterize the hardware infrastruc-
ture used for simulation, and to define how software can take
advantage of specific hardware components, such as GPUs. In
particular, the additional meta-data are organized within the
following categories:

Computational infrastructure that describes the details of
the hardware infrastructure in terms of computational
and communication resources, as well as availability of

specific hardware accelerators.

Hardware constraints that specify whether specific hardware
is required or suggested in a specific simulation step.
This information can be used to optimize the allocation
of computational resources to individual software
modules.

Data locality information that specifies locality in data pro-
duction and consumption. This may enable optimiza-
tions in the deployment, for instance, allocating software
modules that communicate frequently on well connected
computational resources.

Inter-model communication middleware and Adapters.

Meta-data define which data elements are exchanged be-
tween computational models, how such elements are translated
from one model to another and when the communication takes
place. In other words, they define the communication protocol
that governs the interaction between models.

To concretely implement such protocol, our methodology
relies on a middleware that acts as a communication bus
between simulation tools, and standardizes the communication
interfaces. To enable the reuse of well established simulation
tools, we rely on adapters that should be implemented for
each specific simulation tool once, and that translate from
a tool-specific data format to the standard middleware in-
terface. The middleware and the adapters simply define a
common playground for executing models without adding
data processing and communication steps with respect to ad-
hoc solutions. Therefore, we do not expect them to introduce
visible overhead.

Adapters can integrate within a simulation tool at various
levels. Depending on the integration level, they may enable
different degrees of optimization in the integrated simulation.
For example, if an adapter exposes functions to directly access
its results from the main memory, then it enables for faster
data communication with software components that run on the
same physical node, allowing for data locality optimizations.

B. Case Study

We are currently studying and evaluating the feasibility and
benefits of our methodology within a real world project on
angiogenesis, which is the process of generating new blood
vessels from pre-existing vasculature. In this context, our
methodology aims to use meta-data to integrate models of
the development of vascular networks with models of the
blood flow and blood components within veins. This sce-
nario presents three main integration challenges: (i) different
aspects of the domain are encoded with different types of
models, (ii) different models are simulated with different
software tools, each of them presenting specific deployment
and execution strategies, (iii) different models work at different
spatiotemporal scale.

We analyzed the integration problems that arise in the
angiogenesis case study jointly with domain experts, focusing



on the domain specific information about the computational
models, their interaction and their simulation, and we orga-
nize this information according to the conceptual framework
presented in the previous section. Next, we show the results
of this analysis, presenting the information included within
each meta-data category. We are currently investigating the
usage of different meta-data formats suitable to encode such
information.

The project adopts two types of models that consider dif-
ferent types of data: a continuum-based model computes the
geometry of the vascular network, relying on the MRAG
simulation tool [16], a particle-based model describes the
flow through the network, relying on the LAMMPS tool for
simulation [17], a highly-scalable MPI-based code capable of
exploiting GPUs.

The time scale of these two models are very different and
therefore can be separated during simulation. Development of
vascular network takes hours, while the passage of individual
red blood cells through the network takes seconds. Thus, the
two models can be coupled through the exchange of boundary
conditions, as discussed later.

In terms of semantics of data, particles are represented
using their type –fluid, blood cells or vessel walls–, position
and velocity in a tridimensional space, while the continuum
model uses partial differential equations that model the effects
of oxygen and nutrient diffusion, and the proliferation and
propagation of endothelial cells that form the vessel walls.

Both models partition the domain of analysis into sub-
domains, with an instance of MRAG and LAMMPS being
responsible for each sub-domain, potentially on different pro-
cessing nodes. LAMMPS works at a finer granularity than
MRAG, and the division of the domain is not uniform, for
processing efficiency. Interactions between sub-domains are
governed by boundary conditions.

The workflow defines an iterative execution of LAMMPS
and MRAG within each sub-domain. MRAG adopts the flow
information provided by LAMMPS to update the shape of
the network. LAMMPS performs simulation according to the
geometry of the vascular network as computed by MRAG.

Data flow between LAMMPS and MRAG occurs within
each sub-domain. LAMMPS requires data relative to the
geometry of the vascular network and parameters in the
surrounding tissues to produce data about the distribution of
oxygen and nutrients in the tissue, as well as data about the
distribution of wall shear stress. Within each computational
iteration, both the values of the geometry of the network and
the parameters in the surrounding tissue are assumed to be
constant. MRAG takes into account updated distribution of
oxygen and nutrients in the tissue, as well as distribution of
WSS, which will be used to further advance development of
the network. Meta-data include particle-to-mesh and mesh-to-
particle translation functions to enable the communication of
the two computational model.

The communicating conditions are event-based: the data
between models is transferred when specific conditions occur.

The computational infrastructure used within the project
consists of PIZ-DAINT and PIZ-DORA1 at the Swiss National
Super Computer center. While the project does not currently
exploit the support for GPUs in LAMMPS, the plans to take
advantage of GPUs will introduce hardware constraints on
the deployment of the simulations. The nature of the problem
does not enable optimizations related to data locality across
different models. Indeed, each instance of MRAG spans a
domain that is several order of magnitude larger than an
individual region analyzed by an instance of LAMMPS.

This case study confirmed that synthesizing and abstracting
meta-data information about computational models and their
interaction is indeed feasible. It shows that the classes of meta-
data presented in the previous section represent a valid starting
point to drive our methodology that captures relevant aspects
about multi-model integration.

We are collaborating with domain expert in angiogenesis
to concretely compute the cost of specifying meta-data. We
plan to compare different meta-data formats at different levels
of detail and granularity to identify a convenient cost benefit
trade-off of our methodology.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we tackled the problem of integrating heteroge-
neous computational models within a simulation by proposing
an engineering methodology whose prominent novelty is the
introduction of meta-data to capture and encode the salient
elements that drive an efficient integration of models. The
methodology aims to balance the generality of the integration
approach with the efficiency of the integrated simulation.

In this position paper we presented the main elements of the
methodology, whose validity is confirmed by our preliminary
investigation. Our research agenda includes four main items
required for the development of an integration platform.

First, we are extending our analysis of computational mod-
els, to (i) better define the boundaries of our methodology and
(ii) refine the set of features that serve to fully characterize a
computational model and its interaction with other models.

Second, we are investigating suitable languages and for-
malisms to encode meta-data information. We foresee the use
of layered languages, in which only minimal information is
required to define a working integrated simulation. Additional
information can be provided, if needed, to enable finer grained
tuning and optimizations.

Third, we are defining a suitable interface for the inter-
model communication middleware. Such interface has to be
simple enough to enable a fast implementation of working
adapters for existing simulation tools. Yet, it needs to pro-
vide enough flexibility to support specific optimizations when
needed. For example, it should enable computational scientists
to provide guidelines on low level details such as memory
layout and accesses.

Fourth, we are working on efficient algorithms to plan an
optimal or nearly optimal allocation of resources based on the
available meta-data information.

1http://www.cscs.ch/computers



REFERENCES

[1] J. C. Carver, “Software engineering for computational science and
engineering,” Computing in Science & Engineering, vol. 14, no. 2, 2012.

[2] S. J. Zasada, M. Mamonski, D. Groen, J. Borgdorff, I. Saverchenko,
T. Piontek, K. Kurowski, and P. V. Coveney, “Distributed infrastructure
for multiscale computing,” in Procs. of the International Symposium on
Distributed Simulation and Real Time Applications. IEEE Computer
Society, 2012.

[3] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem,
B. Chopard, D. Groen, P. V. Coveney, and A. G. Hoekstra, “Distributed
multiscale computing with muscle 2, the multiscale coupling library and
environment,” Journal of Computational Science, 2014.

[4] P. M. Sloot and A. G. Hoekstra, “Multi-scale modelling in computational
biomedicine,” Briefings in bioinformatics, 2009.

[5] C. Crabtree, A. Koru, C. Seaman, and H. Erdogmus, “An empirical
characterization of scientific software development projects according
to the boehm and turner model: A progress report,” in Procs. of the
Workshop on Software Engineering for Computational Science and
Engineering, 2009.

[6] J. Segal, “Some challenges facing software engineers developing soft-
ware for scientists,” in Procs. of the Workshop on Software Engineering
for Computational Science and Engineering. IEEE Computer Society,
2009.

[7] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz, “Understanding the high-
performance-computing community: A software engineer’s perspective,”
IEEE Softw., vol. 25, no. 4, 2008.

[8] J.-L. Falcone, B. Chopard, and A. Hoekstra, “Mml: towards a multiscale
modeling language,” Procedia Computer Science, vol. 1, no. 1, 2010.

[9] E. T. Ong, J. W. Larson, B. Norris, R. L. Jacob, M. Tobis, and M. Steder,
“A multilingual programming model for coupled systems,” International
Journal for Multiscale Computational Engineering, vol. 6, no. 1, 2008.

[10] I. Sbalzarini, J. Walther, M. Bergdorf, S. Hieber, E. Kotsalis, and
P. Koumoutsakos, “Ppm a highly efficient parallel particlemesh library
for the simulation of continuum systems,” Journal of Computational
Physics, vol. 215, no. 2, pp. 566 – 588, 2006.

[11] Z. Keming, K. Damevski, V. Venkatachalapathy, and S. G. Parker,
“Scirun2: a cca framework for high performance computing,” in High-
Level Parallel Programming Models and Supportive Environments,
2004. Procs. Ninth International Workshop on, 2004.

[12] S. P. Zwart, S. Mcmillan, D. Heggie, J. Lombardi, P. Hut, S. Banerjee,
H. Belkus, T. Fragos, J. Fregeau, M. Fuji, E. Gaburov, E. Glebbeek,
D. Groen, S. Harfst, R. Izzard, M. Juri, S. Justham, P. Teuben, J. Bever,
O. Yaron, and M. Zemp, “A multiphysics and multiscale software
environment for modeling astrophysical systems,” 2008.

[13] M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, and J. K.
Sircar, “Muphy: A parallel multi physics/scale code for high perfor-
mance bio-fluidic simulations,” Computer Physics Communications, vol.
180, no. 9, 2009.

[14] P. Dadvand, R. Rossi, M. Gil, X. Martorell, J. Cotela, E. Juanpere, S. R.
Idelsohn, and E. Oate, “Migration of a generic multi-physics framework
to hpc environments,” Computers & Fluids, vol. 80, 2013.

[15] R. A. Bartlett, “Integration strategies for computational science & engi-
neering software,” in Procs. of the Workshop on Software Engineering
for Computational Science and Engineering. IEEE Computer Society,
2009, pp. 35–42.

[16] D. Rossinelli, B. Hejazialhosseini, D. G. Spampinato, and P. Koumout-
sakos, “Multicore/multi-gpu accelerated simulations of multiphase com-
pressible flows using wavelet adapted grids,” SIAM Journal on Scientific
Computing, vol. 33, no. 2, 2011.

[17] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, 1995.


